Application Layer REST-API
Documentation

Ceyoniq

Version 9.2.1503, 25.09.2024

Table of Contents

Overview
1. Introduction
2. REST URI’s, Header and Parameter
2.1. Service URLs
2.2. Common Request Header and Query Parameter
2.3. Common Response Header
3. REST Examples
Programming
4. REST Client
4.1. Login
4.2. Logout
4.3. Document areas

4.4. Repository

© © © © 00 O = B+ W W N =

—
(e}

Overview

This document describes the REST-API and resources provided by the Application Layer. The REST
APT’s are for developers who want to integrate the Application Layer into their application and for
administrators who want to script interactions with the Application Layer Server.

The Application Layer’s REST APT’s provide access to resources via URI paths. To use a REST API,
your application will make an HTTP request and parse the response. The response format is JSON
or XML. Your methods will be the standard HTTP methods like GET, PUT, POST and DELETE.

Because the REST API is based on open standards, you can use any web development language to
access the API.

Fat Client RSS Reader Webbrowser

- nscale Mobile Outiook @ Skript
_(g;tdgg:]diﬁc;ﬁ)) - Windows-Search
- JScript (OSDX)
Clients
P!
=
w o
] // # (¥d
i 35

R y 74
|XML ‘JSON|Atom‘ HTIVIL‘ csv ‘Binary F‘" -
REST Adapter T 31
Server iCal
Core

Figure 1. Clients for REST interface

Chapter 1. Introduction

Accessing REST API is performed via HTTP. When you enter a URL into a web browser address bar,
the browser performs an HTTP GET request to the URL. This usually returns a web page in the form
of an HTTP response that the browser displays. But the GET method is one of several HTTP request
methods. The Application Layer REST API uses the four main HTTP methods: GET, POST, PUT, and
DELETE. The most widespread methods are GET and POST. The other methods are less known but
they became widely known due to the popularity of REST web services. An important concept of the
REST architecture is that different HTTP request methods perform different actions when applied
to the same URL.

Verb Description

GET Read a resource, Accept header forces representation

HEAD Read a resource, like GET, but only HTTP header are returned, the body is
skipped

POST Create a new resource, result contains the URI of the created resource

DELETE Delete a resource

PUT Modify a resource for the given URI (create a new resource)

The Application-Layer REST-API supports the following representation formats:

Programming representations
* XML (application/xml)
* JSON (application/json)
Other representations
* XHTML / HTML (application/html+xml)
* Text (text/plain, text/csv)

* Binary (PDF, Office, etc.)

Chapter 2. REST URI’s, Header and
Parameter

The chapter describes the basic HTTP resources of the Application Layer.

2.1. Service URLSs

URTI’s for a Application-Layer REST API resource have the following structure:
http(s)://hostname:port/nscalealinst1/rest/service/resource-name

The Application Layer only uses a self-signed certificate by default. You can replace this server
certificate with a digitally signed certificate by a certificate authority (CA).

The self-signed certificate can be downloaded at http(s)://hostname:port/server.certificate

Table 1. Port

Number Description
8080 plain HTTP port
8443 secure HTTPS port

The logical application layer instance is part of the URL. Your application should make this entry
configurable.

Table 2. Instance

Name Description
nscalealinst1 The default application-layer instance name (can be changed)
[any-name] Secondary logical instance name

The service name part must not be configurable. Here are the available services:

Table 3. Core Services
Name Description

authoritymanagement authority management functionality: roles

configuration configuration functionality: dictionary, layouts, property definitions,
value sets

masterdata masterdata functionality: external data

monitoring monitoring functionality: monitoring data, invoke generic

messaging messaging functionality: subscribe resources and workflow, read
messages

repository repository functionality: folder, link and document management

Name Description

usermanagement user management functionality: principals, org. entities, groups and
users.
workflow workflow functionality: processes and taks

Table 4. Resources

Name Description

/docares/{name} document area name as a parameter
/doc/{id} document identifier as a parameter
/folder/{id} folder identifier as a parameter

This are only some examples of a resource path. A complete reference is available at:

http(s)://hostname:port/index.html

The HTML document rest-api.html contains the full resource listing.

2.2. Common Request Header and Query Parameter

The following table describes headers that can be used by various types of REST requests.

Table 5. Request Header

Header Description

Authorization The information required for request authentication

Accept Media type that is acceptable for the response (content negotiation).
Content-Type Media type of the body of the request (used with POST and PUT requests).

Table 6. Query Parameter

Header Description

appid The client application id of the client. If no appid is given, the client
requires the 'nscale SDK' license.

autoclose=true The application cannot use the session cookie. Close session after request.

clientversion The client application version.

properties A list of nscale system of user defined properties for a GET requests.

2.3. Common Response Header

The following table describes response headers that are common to most REST responses.

Table 7. Response Header

Header Description
Content-Length Length of the message (without the headers) according to RFC 2616
Content-Type The content type of the resource in case the request content in the body

Location The URI of the created resource (by PUT or POST request)

Chapter 3. REST Examples

First try to access the application layer via the cURL command line tool.

Here is an example session:

curl -v --basic -u admin:admin
-H "Accept: application/json"
http://localhost:8080/nscalealinst1/rest/repository/docarea/DA/root

GET /nscalealinst1/rest/repository/folder/DASNOTSETS-1$1$NOTSET/children.json HTTP/1.1
Authorization: Basic YWRtaWA6YWRtaW4=

User-Agent: curl/7.21.1 (i386-pc-win32) libcurl/7.21.1 z1ib/1.2.5

Host: localhost:8080

Accept: application/json

Answer from Application Layer:

HTTP/1.1 200

Set-Cookie: JSESSIONID=C829DE8E7C22CA3BF728A65EC880D135;path=/nscalealinst1;HttpOnly
Content-Type: application/json

Content-Length: 1194

Date: Tue, 17 Jan 2017 14:09:03 GMT

<< body >>
The same request with java code. The code uses the JAX-RS 2.0 specification.

static String getRoot (String areaname) {

String restUrl = "http://localhost:8080/nscalealinst1/rest";
URT uri = new URI(restUrl + "/repository/docarea/" + areaname + "/root");

String auth = "Basic " + new String(Base64.encodeBase64("admin:admin".getBytes()))

Client client = ClientBuilder.newClient();

try {
return client.target(uri).request()
.header ("Authorization", auth)
.accept (MediaType.APPLICATION_JSON)
.get (String.class);
} finally {
client.close();

}

The same request with C# code. The code uses the HttpClient object (requires Framework 4.5).

static async Task < String > getRoot()
{
using (var httpClient = new HttpClient())
{
httpClient.DefaultRequestHeaders.Authorization = new
AuthenticationHeaderValue("Basic",
Convert.ToBaseb64String(System.Text.ASCIIEncoding.ASCII.GetBytes(
string.Format("{0}:{1}", "admin", "admin"))));

var response = await httpClient.GetAsync(baseAddress +
"/repository/docarea/DA/root.json");
return await response.Content.ReadAsStringAsync();

}

Programming

This chapter describes details for programming.

Chapter 4. REST Client

Lets write a typical client for the REST-API.

4.1. Login

There is no special REST URL to send the credentials. The standard HTTP authentication mechanism
is used by REST:

* Basic

* NTLM

* Negotiate (Kerberos or NTMLv2)
* OpenID Connect (ADFS)

Additional authentication schemas:

* Implicit (can be used for impersonation)

AuthlID (ID/secure-card based login)

KNM (Kyocera Network Manager)

SAML (planned)

The server uses a session cookie. The client should use this cookie for following requests.
Resource name: /rest/login

This resource retrieves additional information of the session access rights.

Note: if the client cannot use cookies, use the autoclose query parameter. Example:
/rest/resource?autoclose

4.2. Logout
Resource name: /rest/logout

This resource will close the server session and the HTTP session for the REST adapter. You can also
use the query parameter autoclose to force the logout after one request.

Caution: just disconnecting the HTTP connection will leave an open session in the server.

4.3. Document areas

The client should allow the user to select a document area. Therefore you should detect the possible
choices.

Get all available document areas for the current user:

curl -v --basic -u admin:admin
-H "Accept: application/json”
http://localhost:8080/nscalealinst1/rest/repository/docareas

GET /nscalealinst1/rest/repository/docareas HTTP/1.1
Authorization: Basic YWRtaWA6YWRtaW4=

User-Agent: curl/7.54.0

Host: localhost:8080

Accept: application/json

vV V V V V

The HTTP header "Accept” controls the representation of the response body.

Answer from Application Layer:

HTTP/1.1 200

Set-Cookie: JSESSIONID=46312ED0448E60152813EE5E8CECD849; path=/nscalealinst1;HttpOnly
Content-Type: application/json

Content-Length: 644

Date: Thu, 19 Jan 2017 15:43:13 GMT

N N N N AN

{"docAreas":[
{ "areaName": "DA",
"displayNameId": "DA",
"rootFolderId": "DA$NOTSET$-1$1$NOTSET",
"personalFolderId": "DASNOTSET$60$1$NOTSET"

+
{ "areaName": "APPS", "displayNameId": "APPS",", ... }

I}

The current user can access the document areas DA and APPS. There are two starting points for the
repository. The rootFolderId is the global repository key and personalFolderId is the personal folder
repository id.

4.4. Repository

4.4.1. Get the root folder from a document area:

To start on a document area you must retrieve the root entry point (resource key).

curl -v --basic -u admin:admin
-H "Accept: application/json"
http://localhost:8080/nscalealinst1/rest/repository/docarea/DA/root

> GET /nscalealinst1/rest/repository/docareas HTTP/1.1

> Authorization: Basic YWRtaW46YWRtaW4=
> User-Agent: curl/7.54.0

10

> Host: localhost:8080
> Accept: application/json

The HTTP header "Accept" controls the representation of the response body.

Answer from Application Layer:

HTTP/1.1 200

Set-Cookie: JSESSIONID=46312ED0448E60152813EESE8CECD849; path=/nscalealinst1;HttpOnly
Content-Type: application/json

Content-Length: 1133

Date: Thu, 19 Jan 2017 15:43:13 GMT

VANNVA VANV ANRRVAN

{ "resourcekey":

{ "i1d":"DASNOTSET-181NOTSET",
"areaName":"DA",
"type":"FOLDER"},

"properties":[...]

4.4.2. Get the children of a folder element:

To display the child elements of a folder, you must retrieve the possible children.

curl -v --basic -u admin:admin
-H "Accept: application/json"
http://localhost:8080/nscalealinst1/rest/repository/folder/DASNOTSETS-
1$1$NOTSET/children?properties=displayname

GET /nscalealinst1/rest/repository/docareas HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=

User-Agent: curl/7.54.0

Host: localhost:8080

Accept: application/json

V V V V V

Note that the query parameter "properties" defines the returned property values.

Answer from Application Layer:

HTTP/1.1 200

Set-Cookie: JSESSIONID=46312ED0448E60152813EESE8CECD849; path=/nscalealinst1;HttpOnly
Content-Type: application/json

Content-Length: 1198

Date: Thu, 19 Jan 2017 15:43:13 GMT

N N N N AN

{ "id":"DASNOTSETS-1$1$NOTSET",

11

"displayName":"DA",

"count":1,

"items": [{ "resourceKey":{"id":"DASNOTSET$103$1$NOTSET", "areaName": "DA", "type":
"FOLDER"},

"properties": [{"name":"displayname","value":"Rainer"} 1}

The result is a structure with resource keys and their properties.

4.4.3. Search for elements:

The search query contains the NQL (nscale query language) string for searching. Please read the
NQL reference document.

curl -v --basic -u admin:admin
-H "Accept: application/json"
"http://localhost:8080/nscalealinst1/rest/repository/folder/DASNOTSETS$-
181$NOTSET/search?query=select%20displayname"

GET /nscalealinst1/rest/repository/docareas HTTP/1.1
Authorization: Basic YWRtaWA6YWRtaW4=

User-Agent: curl/7.54.0

Host: localhost:8080

Accept: application/json

vV V V V V

The HTTP header "Accept” controls the representation of the response body.

Answer from Application Layer:

< HTTP/1.1 200 OK

< Server: Apache-Coyote/1.1

< Set-Cookie: JSESSIONID=BDBDBD64C26F8E7511AF318C4EEB8991; Path=/nscalealinstT;
HttpOnly

< Content-Type: application/json

< Content-Length: 208

< Date: Tue, 13 Jun 2017 08:59:23 GMT

"id":"DASNOTSETS-1$1$NOTSET",

"displayName":"SEARCH",

"count":1,

"items":[{"resourceKey":{"id":"DASNOTSET103T1$NOTSET", "areaName":"DA","type":
"FOLDER"},

mn

"properties":[{"name":"displayname", "value":"Rainer"}]}

12

The result is a structure with resource keys and their properties.

4.4.4. Modify properties:

The request is uses the PUT method (modify). For the application layer it behaves like a PATCH
request. Only the given properties are changed.

curl -v --basic -u admin:admin
-H "Accept: application/json"
-H "Content-Type: application/json’
-X PUT
--data-binary @file.json
http://localhost:8080/nscalealinst1/rest/repository/doc/testSNOTSET$53828NOTSET

PUT /nscalealinst1/rest/repository/folder/DASNOTSET$153$1$NOTSET HTTP/1.1
Host: localhost:8080

Authorization: Basic YWRtaW4b6YWRtaW4=

User-Agent: curl/7.54.0

Accept: application/json

Content-Type: application/json

Content-Length: 126

V V V V V V V

JSON document (file.json)

{
"properties": [
{
"name": "displayname",
"value": "Value of Displayname"
"name": "latitude",
"value": {
"list": [1.0, 2.0]
}
}
]
}

Answer from Application Layer:

< HTTP/1.1 204 No Content

< Server: Apache-Coyote/1.1

< Set-Cookie: JSESSIONID=8FFEAC201490545C81E33BOE2FFB468E; Path=/nscalealinsti;
HttpOnly

< Date: Tue, 13 Jun 2017 08:56:16 GMT

<

The HTTP code 204 means that nothing is returned here.

13

4.4.5. Document upload

A document upload should be an multipart/mixed request. The first part contains the metadata and
the next parts one or more payload’s.

The first part must have the media type "application/json" or "application/xml".

curl -v --basic -u admin:admin
-H "Accept: application/json”
-H "Content-Type: multipart/mixed"
-F "metadata=@Emetadata.json; type=application/json"
-F "content=@MyFileToUpload.jpg; type=image/jpg"
http://localhost:8080/nscalealinst1/rest/repository/doc/testSNOTSET$53828NOTSET

GET /nscalealinst1/rest/repository/docareas HTTP/1.1
Authorization: Basic YWRtaWA6YWRtaW4=

User-Agent: curl/7.54.0

Host: localhost:8080

Accept: application/json

V V V V V

JSON document (metadata.json)

{
"properties":[{
"name":"displayname",

m,.n

"value":"The displayname value"
H,
"objectclassname":"D1",
"contentItemProperties":[{
"properties":[{
"name":"name", "value":"The item name value" }, {
"name":"displayName", "value":"The item displayname value" } , {
"name":"contentType", "value":"image/jpeg" }, {
"name":"lastModified", "value":1393875885230

}]
H,
"contentProperties”:[{
“name":"contentType", "value":"text/plain; charset=\"is0-8859-1\""

}H

The curl parameter "-F" must be used for multipart documents.

Answer from Application Layer:

< HTTP/1.1 201 Created

< Server: Apache-Coyote/1.1

< Set-Cookie: JSESSIONID=F09888110FDI8E2C98FA4E44249870A9; Path=/nscalealinstT;
HttpOnly

14

< Location:
http://localhost:8080/nscalealinst1/rest/repository/doc/DASNOTSET$364$28NOTSET
< Content-Type: application/json

< Content-Length: 65

< Date: Tue, 13 Jun 2017 09:17:42 GMT

{ "id":"DASNOTSET$364$2$NOTSET",
"areaName":"DA",
“type":"DOCUMENT"

}

The location header contains the new resource URL. The body contains the resource key element.

15

	Application Layer REST-API Documentation
	Table of Contents
	Overview
	Chapter 1. Introduction
	Chapter 2. REST URI’s, Header and Parameter
	2.1. Service URLs
	2.2. Common Request Header and Query Parameter
	2.3. Common Response Header

	Chapter 3. REST Examples

	Programming
	Chapter 4. REST Client
	4.1. Login
	4.2. Logout
	4.3. Document areas
	4.4. Repository

