
Application Layer NQL
Documentation

Ceyoniq

Version 9.2.1503, 25.09.2024

Table of Contents
Nscale Query Language. 1

1. Basic Structure . 2

2. The select clause. 3

2.1. Examples . 3

3. The where clause . 5

3.1. Examples . 6

4. The orderby clause . 9

4.1. Examples . 9

5. The paging element . 10

5.1. Examples . 10

6. The scope element . 12

6.1. Examples . 12

7. The count element . 13

7.1. Examples . 13

8. The hidden element . 14

8.1. Examples . 14

9. Properties . 15

9.1. Scope Repository, Workflow and Business Process (BPMN) . 15

9.2. Scope Masterdata, Principal (User Management) and Calendar (Collaboration). 15

9.3. Notations . 16

10. Constants . 17

10.1. Examples . 17

10.2. Convenience constants . 18

11. Context Variables. 19

11.1. Examples . 20

12. Query Functions. 21

12.1. Convert Functions . 22

12.2. Mathematical Functions. 26

12.3. String Functions . 32

12.4. Date/Timestamp Functions . 43

12.5. List Functions . 51

12.6. Other Functions . 58

13. Aggregate Searches . 75

13.1. The select clause. 75

13.2. The where clause . 75

13.3. The orderby clause . 76

13.4. Examples . 76

14. Subqueries. 78

14.1. The select clause. 78

14.2. The where clause . 79

15. Bulk Operations . 82

15.1. Bulk Update . 82

15.2. Bulk Delete. 82

Nscale Query Language
The nscale Query Language (NQL) is a language which can be used to query information stored by
nscale Server Application Layer.

The nscale Server Application Layer API (Advanced Connector) provides several search methods
which demand an NQL string as parameter to determine the submitted search. Parts of the NQL can
also be used to configure the nscale Server Application Layer, for example to define visibility rules
or formatted properties.

The syntax of NQL is adapted from SQL syntax and is explained in this document. Be aware that
NQL is a textual representation of an equivalent object search model (see class SearchControl of the
Advanced Connector API). It is recommended to use the object search model instead of an NQL
statement to enhance performance (an NQL statement has to be parsed and transformed into a
SearchControl before a search can be executed). This document describes the complete NQL of
nscale Server Application Layer of version 9.2.

1

Chapter 1. Basic Structure
An NQL instruction is made up of a maximum of the following elements:

• select <list of properties>

• where <condition>

• orderby <sorting list>

• paging (number = <long>[, size = <long>])

• scope onelevel or scope subtree

• count

• hidden

All elements are optional (so the empty string is a valid NQL expression), however the order of the
elements is prescribed. If an element is specified, it can itself contain required and optional
elements. All language elements with the exception of function names, context variables and nscale
object names can be provided in lower or upper case. Function names, context variables, and
nscale object names such as properties or object class names must match the upper and lower case
conventions that are specified or created in the system.



In a first step the NQL parser tries to parse an NQL statement by using the much
simpler NQL 6 grammar (in nscale 6 there were no query functions, instant
properties, filtered properties, aggregate functions and so on). If this fails (e.g.
because query functions are used) in a second step the NQL parser tries to parse
the NQL statement by using the much more complex NQL 7 grammar. It is possible
though to give the parser a hint to use NQL 7 grammar already in the first step to
prevent the needless try with NQL 6 grammar when nscale 7 functionality is
contained. This is done by appending the characters \7 as a prefix of the NQL
statement, e.g. \7 select up(displayname).

2

Chapter 2. The select clause
The properties to be returned are determined by the select clause. The select clause starts with key
word select, followed by an arbitrary number of comma-separated properties (or alternatively a
wildcard *, see examples below). Temporarily calculated expressions, called instant formatted
properties or shortened instant properties, can also be included in the select clause. An instant
property is determined by a QueryOperand, which is one of a property, a constant, a context
variable or a function. Note that besides provided properties the returned result set always
contains key information for every contained row. So, if no further information is necessary, the
select clause may be omitted.

2.1. Examples
• select * (strictly disadvised)

• select creationdate, displayname, objectclass, version

• select displayname, yearcreation=year(initialcreation)

In the last example, the instant property with alias yearcreation contains the year of creation of a
resource. For an instant property, an alias should be provided, however in nscale Server Application
Layer of at least version 7.11 this is not mandatory anymore. Nevertheless it is recommended to use
an alias in productive code, as clients may fail over a missing alias (e.g. for compatibility reasons).
An alias may be omitted for testing purpose, e.g. in the nscale Query Tester.



It is strictly disadvised to use select *, as this results in an overload of the database.
It is only provided for convenience and testing purpose and should not be used in
productive code. There are even more convenience abbreviations which are
meant for testing purpose and should not be used in productive code, for example:

• select *\(f) returns all properties except fulltext properties

• select *\(c) returns all properties except computed properties

• select *\(m) returns all properties except formatted properties

• select *\(f, c, m) combination of the three above

• select *\(mv) returns all properties except multi-value properties

• select *\(sv) returns all properties except single-value properties

• select *\(sp) returns all properties except system properties

• select *\(cp) returns all properties except custom properties

• select *\(v) returns all properties except virtual properties

• select *\(pv) returns all properties except pseudo-virtual properties

• select *\(s) returns all properties except string properties

• select *\(i) returns all properties except integer properties

• select *\(l) returns all properties except long properties

3

• select *\(d) returns all properties except double properties

• select *\(b) returns all properties except boolean properties

• select *\(dt) returns all properties except date properties

• select *\(ts) returns all properties except timestamp properties

• select *\(bt) returns all properties except blob properties

• select *\(aq) returns all properties except area qualified identifier properties

• select *\(_s) returns all properties except non-string properties

• select *\(_i) returns all properties except non-integer properties

• select *\(_l) returns all properties except non-long properties

• select *\(_d) returns all properties except non-double properties

• select *\(_b) returns all properties except non-boolean properties

• select *\(_dt) returns all properties except non-date properties

• select *\(_ts) returns all properties except non-timestamp properties

• select *\(_bt) returns all properties except non-blob properties

• select *\(_aq) returns all properties except non-area qualified identifier properties

4

Chapter 3. The where clause
The where clause starts with key word where followed by a condition which must be met by a
resource in nscale Server Application Layer in order that it is part of returned result set. The
condition may consist of several expressions which are OR or AND combined. An expression of a
condition consists of a left hand side and a right hand side, combined by an operator. The left hand
side and the right hand side must be a QueryOperand, which is one of a property, a constant, a
context variable, a function or a list of these. Supported operators are:

Operator Description

= The equal operator

!= The not equal operator; alternative representation is <>

> The greater operator

>= The greater or equal operator

< The smaller operator

<= The smaller or equal operator

in The in operator; note that the right hand side of an in operator must be a list;
alternative representation is []

between The between operator to search for an including interval; note that the right
hand side of a between operator must be a list which contains exactly two
elements; alternative representation is ><

like The like operator to search for matching resources; the wildcard * stands for
an arbitrary number of characters while the wildcard ? stands for exactly one
character; wildcards are escaped by the \ character; alternative representation
is ~

is null The is null operator to search for undefined values; note that the right hand
side of a is null operator must be omitted; alternative representation is = #

is not null The is not null operator to search for defined values; note that the right hand
side of a is not null operator must be omitted; alternative representation is !=
#

@= The soundex equals operator to search for values which sounds similar
(Soundex algorithm); alternative representation is soundexEquals

~= The similar to operator to search for values which accomplish a certain
similarity (Levenshtein algorithm); alternative representation is similarTo

%= The equals ignore case operator to search for case insensitive values;
alternative representation is equalsIgnoreCase

%~ The like ignore case operator to search for matching resources (see like
operator, but ignore case); alternative representation is likeIgnoreCase

*= The matches operator to search for resources which match a regular
expression; alternative representation is matches

5

All elements of a condition may be enclosed in parentheses to improve legibility or to raise the
priority of a sub condition. As an AND condition has a stronger binding than an OR condition, to get
expected results, an appropriate parenthesis is necessary. Example:

where displayname like 'a*' and (resourcetype = 1 or resourcetype = 2)

Note that the left hand side and the right hand side of an expression must have the same data type.
However, integers and longs can be mixed together, as well as dates and timestamps. In the latter
case, for dates a timestamp midnight is considered. If an expression contains a property of type
boolean, the operator and the right hand side may be omitted for convenience and to improve
legibility. So instead of where hasnote = true it is sufficient to request where hasnote. To negate an
expression, a NOT condition can be used. So instead of where hasnote != true it is also possible to
request where not hasnote.

For multi-value properties, a special handling is necessary. A multi-value property in a condition
must be used inside of an EXISTS condition. In turn, all properties inside of an EXISTS condition
must belong to the same multi-value scope. Example:

where exists(itemcontenttype = 'text/plain' and itemlength > 100)

This condition finds all resources whose multi-value scope contentiteminfo contains an entry with
content type text/plain and a length > 100.

To sum it up, a condition is a representation of one of the following components:

Name Format Remarks

Expression <QueryOperand> <Operator>
<QueryOperand>

Note that for operator is null and is not
null the right hand side query operand
must be omitted

AND-Condition <Condition> and <Condition> Alternative representation is &

OR-Condition <Condition> or <Condition> Alternative representation is |

NOT-Condition not <Condition> Alternative representation is !

EXISTS-Condition exists(<Condition>) Alternative representation is €

Note that the where clause is optional in principle, but usually it is reasonable to restrict the
number of rows of a returned result set, so it should rarely be omitted.

3.1. Examples
In the following examples, we assume that there is a single-value property lastname of type string,
as well as a multi-value scope CARS containing the properties car of type string and color of type
string.

NQL Description

where displayname = 'Invoice' Finds all resources where property displayname
equals Invoice

6

NQL Description

where displayname like 'Invoice*' Finds all resources where property displayname
begins with Invoice

where not displayname like 'Invoice*' Finds all resources where property displayname
does not begin with Invoice

where displayname is null Finds all resources where property displayname
is null

where displayname is not null Finds all resources where property displayname
is not null

where lifecyclestate in (1,2,3) Finds all resources where lifecyclestate is
finalized (1), to be archived (2) or archived (3)

where lifecyclestate < 1 Finds all resources where lifecyclestate is
indexed (0)

where creationdate between (2016-01-01, 2016-
12-31)

Finds all resources where current version has
been created between January 1st 2016 and
December 31th 2016

where lastname @= 'Smiths' Finds all resources where lastname sounds like
Smiths, e.g. Smith, Smyth, Smythe etc.

where lastname ~= 'Smiths' Finds all resources where lastname is similar to
Smiths, e.g. Smith, Smyth, Smythe etc.

where lastname %= 'sMithS' Finds all resources where lastname equals
ignore case Smiths

where exists(color = 'red') Finds all resources where color contains an
entry red

where exists(color = 'red' or color = 'green') Finds all resources where color contains an
entry red or an entry green

where exists(color in ('red', 'green')) This statement is equivalent to the former one

where exists(color = 'red') and exists(color =
'green')

Finds all resources where color contains an
entry red and an entry green.

where exists(color = 'red' and color =
'green')

Does not find any resource (an entry in color
cannot be red and green at the same time).

where exists(color != 'red') Finds all resources where color does contain an
entry which is not red

where not exists(color = 'red') Finds all resources where color does not contain
an entry red

where not exists(color != 'red') Finds all resources where color does not contain
an entry which is not red

where exists(color is not null) Finds all resources where color does contain at
least one entry

7

NQL Description

where not exists(color is not null) Finds all resources where color does not contain
any entry

where exists(car = 'Mercedes' and color =
'blue')

Finds all resources where multi-value scope
CARS contains a blue Mercedes

where exists(car = 'Mercedes') and exists
(color = 'blue')

Finds all resources where car contains a
Mercedes and color contains blue



Be aware that the result of a where clause may differ for every database dialect, as
every database dialect has a different behavior in detail (e.g. Oracle does not
distinguish between null and an empty string). This is also true for the orderby
clause.



Be additionally aware that the performance of a search is highly dependent on
how it is formulated in NQL and whether there are suitable database indexes
present. E.g. for case-ignore operators like %= and %~, the system can not provide
suitable database indexes automatically. They have to be generated manually. Note
that not all database dialects support the necessary type of database indexes for
such an operation.

8

Chapter 4. The orderby clause
The orderby clause starts with key word orderby or alternatively order by. With the orderby clause
the sorting of the query results can be determined. This is done by specifying the property
according to which the sorting should take place and, optionally, the sort order (asc (ascendant) or
desc (descendant)). The property may also be an instant property. By specifying further properties
the sub-sorting of results can be specified. The syntax is:

orderby <property name> [asc|desc][, <property name> [asc|desc], ...]

If sort order is not specified, the result set will be sorted in ascending order.


Note that sorting by a multi-value property is not supported. To overcome this
restriction, it is possible though to define an appropriate value property which
uses for example query function listEntry or toFlat on the multi-value property.

4.1. Examples
• orderby initialcreation desc, identifier

• order by displayname

• orderby year(creationdate) desc, displayname

• orderby length(displayname) asc, displayname

9

Chapter 5. The paging element
Paging allows to specify a segment of the actual hits of a search which is returned as result. This is
especially useful when a search would return a large number of rows. It enables to iterate through
the actual result set by submitting subsequent searches, each with a small number of rows. For the
paging element, the page number (starting by 1) and the page size can be specified, e.g. a page
number 1 and a page size 100 returns the first 100 hits (the first page) of a search.



Note that the order of the entries of a page is specified by the orderby clause. If the
orderby clause is omitted or does not determine a unique order, it is possible that
duplicate entries may occur in different pages and on the other hand entries may
be missing at all. To overcome this behavior, it is recommended to add an orderby
clause which determines a unique order when using paging, e.g. order by
identifier for the scope Repository.

5.1. Examples

NQL Description

paging(number=1, size=100) Returns the first 100 hits (the first page) of a
search

paging(size=100, number=1) This statement is equivalent to the former one

paging(number=2, size=100) Returns the second 100 hits (the second page) of
a search

paging(size=25) Returns the first 25 hits (the first page) of a
search

paging(number=1) Returns the first 1000 hits (the first page) of a
search

paging(1, 50) Returns the first 50 hits (the first page) of a
search

paging(2, 50) Returns the second 50 hits (the second page) of a
search

paging(30) Returns the first 30 hits (the first page) of a
search

paging() Returns the first 100 hits (the first page) of a
search

[0, 100] Returns the first 100 hits (the first page) of a
search. Caution: for this notation, the page
number is zero-based!

[50] Returns the first 50 hits (the first page) of a
search.

10

NQL Description

[#1] Returns the second 100 hits (the second page) of
a search. Caution: for this notation, the page
number is zero-based!

[] Returns the first 100 hits (the first page) of a
search.

11

Chapter 6. The scope element
The scope element is only effective for searches in Repository and in UserManagement.

In Repository, the scope element can be used to restrict the search to the current folder or,
additionally, expand it to include the subfolders of the current folder. With scope onelevel the
search is restricted to current folder while with scope subtree the search is expanded to all
subfolders of the current folder. If no scope is specified, scope onelevel takes effect.

In UserManagement, a search with scope onelevel initiates a search based on Principal and join to
PrincipalInfo, while a search with scope subtree initiates a search based on PrincipalInfo and join to
Principal. So, a search with scope onelevel finds users, positions and groups of the configured
domains, but no additional or orphaned principal info objects. In turn, a search with scope subtree
finds all existing principal info objects, but no positions (positions do not have additional
information) and no principals who do not have default principal info yet.

6.1. Examples
• select displayname returns display name of all resources of current folder

• select displayname scope onelevel equivalent to the statement before

• select displayname scope subtree returns display name of all resources of subtree of current
folder

12

Chapter 7. The count element
The count element is only useful in a search with paging. If this element is used, the total number of
results is determined and returned. This can be useful if e.g. only the first 100 hits are requested but
the actual number of hits should also be provided.

7.1. Examples
• paging (1, 50) count

• [0, 0] scope subtree count

In the first example, the rows 1 to 50 and the total number of hits are returned. In the second
example an empty result set is returned but the total number of hits is provided. Note that the
count element initiates a parallel select count search in the database which can be rather time
consuming (for the second example only the select count search is initiated). So the count element
should only be used, when the actual row count is really needed. Note that when the count element
is omitted, the result set of a search at least contains information, whether more results are
available.

13

Chapter 8. The hidden element
The hidden element is only effective for searches in Repository, Workflow and Business Process.

Normally, resources for which the system attribute hidden, processhidden respectively
bp_processhidden is set are not taken into account when evaluating an NQL query. If the hidden
element is specified in an NQL query, however, these objects are taken into account.

8.1. Examples
• where resourcetype = 2 and hidden scope subtree hidden

• select processhidden hidden

In the first example, all hidden documents are returned. In the second example, hidden as well as
not hidden processes are returned, identified by selected property processhidden.

14

Chapter 9. Properties
Note that properties are also often called attributes, these two notations are synonymous. For every
different scope (like Repository, Workflow, Masterdata etc.) there is a set of properties provided
which can be used in NQL. The set of properties may consist of system defined as well as user
defined properties. Whether a property can be used in the select, where or orderby clause depends
on several settings, like the type of a property or whether it is single-valued or multi-valued.

9.1. Scope Repository, Workflow and Business Process
(BPMN)
For the scopes Repository, Workflow and Business Process it is easy to decide, whether a property
can be used in the select, where or orderby clause. Every property in these scopes has three boolean
flags Selectable, Searchable and Sortable. If a property is Selectable, it may be used in the select
clause. If a property is Searchable, it may be used in the where clause. If a property is Sortable, it
may be used in the orderby clause. Note that for the flags Searchable and Sortable there are some
restrictions, which means not for every property it is allowed to set these flags to true.

A property is not allowed in the where or orderby clause when

• it is of type Blob

• it is a system computed property

• it is a custom computed property which depends on other necessary properties

• it is a formatted property which depends on other non-searchable or non-sortable components

• it is a fulltext property

A property is also not allowed in the orderby clause when

• it is multi-valued

Note that it is possible though to sort over the first entry of a multi-value property by creating a
value property with the format entry(myMultivalueProperty, 0). Another option is to create a value
property with format toFlat(myMultivalueProperty).

9.2. Scope Masterdata, Principal (User Management)
and Calendar (Collaboration)
There are some differences to the scopes Repository, Workflow and Business Process. First, there are
no system computed properties in these scopes (there may be custom computed properties in scope
Masterdata though), and in scopes Principal and Calendar there are even no formatted properties.
Second, in scopes Principal and Calendar there are no user defined properties, the set of provided
properties is fixed and defined by system. In turn, in scope Masterdata there are no system
properties but only user defined properties. The resulting constraints are:

• a property of type Blob is not sortable; it is only searchable when using operator is null or is

15

not null

• a multi-value property is not sortable

• a formatted masterdata property may only be searchable respectively sortable when the
contained components are searchable respectively sortable

9.3. Notations
The name of a property is case-sensitive, so the use of upper and lower letters is essential. In scopes
Repository, Workflow and Business Process, it is possible to create a property which references a
masterdata key property. If such a reference is created, all properties of corresponding masterdata
scope are provided as virtual properties and it is also possible to copy these properties in actual
scope (so called pseudo-virtual properties). The notation for virtual properties is <masterdata key
reference>:<masterdata scope>$<masterdata property>. The notation for pseudo-virtual properties is
<masterdata key reference>$<masterdata scope>$<masterdata property>.

16

Chapter 10. Constants
Constants may be used in the select, where and orderby clause. For the different types, the
following syntax is required:

Type Description

String A constant of type string must be quoted either in single quotes ' or in double
quotes ". If the string itself contains the quoting sign, the quoting sign must be
escaped by the quoting sign itself (double quoting sign).

Boolean A constant of type boolean must be either true or false

Integer A constant of type integer is a number in the range of a java Integer

Long A constant of type long is a number in the range of a java Long

Double A constant of type double is a number in the range of a java Double, the
decimal divider is a dot, e.g. 3.14

Date A constant of type date must be in format yyyy-MM-dd, e.g. 2017-12-31

Timestamp A constant of type timestamp must be in format yyyy-MM-ddTHH:mm:ss, e.g. 2017-
12-31T12:34:56

AreaQualifiedIdent
ifier

A constant of type area qualified identifier must consist of the name part of
the area qualified identifier as string

A list of constants must be set in parentheses, e.g. (1, 2, 3). Note that sorting by a constant is not
reasonable and is not supported by many database dialects, so something like orderby 87 should not
be used.

10.1. Examples

NQL Description

select 'I was bored before I even began' Returns given constant

select x='I was bored before I even began' The same as above but with alias x

select 'foo', 1, true Returns constants foo as string, 1 as long and
true as boolean

where initialcreation >= 2017-01-01 Finds all resources which have been created in
2017 or later

where hasnote = true or hasrendition = false Finds all resources which have at least one note
or no rendition

where objectclass in ('D1', 'D2', 'D3') Finds all resources with objectclass D1, D2 or D3;
the property objectclass of type area qualified
identifier demands string constants (the name
part of the area qualified identifier)

where resourcetype in (1, 2, 3) Finds all folders, documents and links

17

NQL Description

orderby substring(displayname, 0, 1) Sorts the result set by the first character of the
displayname; in this case, the use of constants 0
and 1 in the orderby clause is reasonable, as
they are used in a function which also contains a
property

10.2. Convenience constants
For special properties which act like enumerations, NQL provides constants which can be used for
convenience:

Property Constants Example

resourcetype
(scope Repository)

$folder, $document, $link,
$annotation, $note, $rendition,
$container, $addition

where resourcetype in ($folder,
$document)

lifecyclestate
(scope Repository)

$indexed, $finalized, $toBeArchived,
$archived, $error

where lifecyclestate = $archived

deletestate (scope
Repository)

$none, $logicallyDeleted, $logically,
$automaticallyDeleted, $automatically

where deletestate = $none

linkreferencetype
(scope Repository)

$softlink, $hardlink where linkreferencetype = $hardlink

subtype (scope
Repository)

$xsap, $mail, $vcard, $calendar,
$partition, $office, $lta, $file,
$signature, $sapilm

where subtype = $xsap

type (scope
UserManagement)

$user, $position, $group where type = $user

18

Chapter 11. Context Variables
The nscale Server Application Layer provides several context variables. The value of a context
variable depends on the context of the current request. The following context variables are
available:

Context
Variable

Type Description

%currentUserPr
incipalId

String Provides the principal id of current user (the user who initiated
current request)

%currentDefaul
tPositionPrinc
ipalId

String Provides the principal id of the default position of current user

%currentPositi
onPrincipalIds

List < String > Provides the principal ids of all positions of current user

%currentGroupP
rincipalIds

List < String > Provides the principal ids of all groups (hierarchical) of current
user

%currentProxie
dOrgEntityPrin
cipalIds

List < String > Provides the principal ids of all organizational entities where the
current user has proxy competences for; note that proxy
competences are transitive

%currentHeaded
OrgEntityPrinc
ipalIds

List < String > Provides the principal ids of all organizational entities where the
current user has head competences for (flat supervisor
competence)

%currentManage
dOrgEntityPrin
cipalIds

List < String > Provides the principal ids of all organizational entities where the
current user has manager competences for (hierarchical
supervisor competence)

%currentOwnedO
rgEntityPrinci
palIds

List < String > Provides the principal ids of all organizational entities where the
current user has owner competences for; reading access to
principal folders of owned organizational entities is granted

%actAsPosition
Ids

List < String > Provides the principal ids of all positions where the current user
has agent competences for; an agent competence on a position
allows to login as principal who owns the position

%agentPrincipa
lId

String Provides the principal id of a principal who acts as an agent in
current session, e.g. who logged in as a principal by using agent
competences

%currentWorkPo
sitionPrincipa
lId

String Provides the work position id of current user which must be the
id of an existing position of current user or null; if not null,
workflow requests are executed in the context of this id by
default

%today Date Provides the current date

%now Timestamp Provides the current date and time

%todayAtMidnig
ht

Timestamp Provides the current date at midnight

19

Context
Variable

Type Description

%tomorrowAtMid
night

Timestamp Provides the next date at midnight

%clientHost String Provides the name of the host which sent current request

%clientIPAddre
ss

String Provides the ip address of the host which sent current request

%clientApplica
tion

String Provides the name of the nscale application which sent current
request

%clientLocale String Provides the locale of the client application which sent current
request

%clientToken String Provides a token which has been set in current session by the
client application (user defined value without any meaning for
the nscale Server Application Layer)

%similarityThr
eshold

Double Provides the configured threshold for a similarity search as a
value between 0 and 1; two strings are considered as similar,
when the similarity algorithm returns a value greater than or
equal to this value

%systemId String Provides the system id, uniquely identifying an nscale Server
Application Layer system

%currentResour
ce

String Provides the id of currently affected resource

%currentWorkfl
owInstance

String Provides the id of currently affected workflow instance

%currentBusine
ssProcessInsta
nce

String Provides the id of currently affected business process instance

11.1. Examples

NQL Description

select %clientLocale Returns the locale of the client application which sent current
request, e.g. de or en_US

where initialcreator =
%currentUserPrincipalId

Finds all resources which have been created by current user

where
exists(involvedpositionids in
%currentPositionPrincipalIds)

Finds all workflow instances where current user has been
involved. Note that %currentPositionPrincipalIds must NOT be
set in parentheses as this context variable is already a list, so
setting parentheses would result in a list of lists

where creationdate >= %today Finds all resources which have been created today

20

Chapter 12. Query Functions
The nscale Server Application Layer provides 96 query functions which can be used in the select,
where and orderby clause. The parameters of a query function are QueryOperands which can be
one of a property, a constant, a context variable, a query function or a list of these. Note that a
parameter of a query function which is parenthesized is automatically converted to a list. For most
query functions most parameters support single-values and multi-values. In general, when at least
one parameter is multi-valued, the following logic is implemented (there are exceptions from this
rule though):

• the return value is multi-valued

• the length of returned list is determined by the length of the longest list of all list parameters

• all list parameters which are shorter are logically filled up with null values

• a single-value parameter behaves like a multi-value parameter where all list entries contain the
single value

• the query function is executed line by line for every row



Be aware that the result of a query function in the select clause may differ from
the result in the where or orderby clause, as the result of the select clause is
calculated in the nscale Server Application Layer while the result of the where and
orderby clause is calculated in the database. This means, the result of the where
and orderby clause depends on the implementation of the function within the
database (which actually may be different for every database dialect). Be also
aware that the (extensive) use of query functions in the where or orderby clause
may decrease the performance of searches drastically, so use them with care. This
is in particular the case when nested query functions are used (query functions
inside of query functions).

Note that some of the functions are not searchable and/or not sortable, because there is no
equivalent function in the database (this may depend on used database dialect). Whenever this is
the case, it is mentioned in the descriptions below. However, these restrictions are only effective,
when a function contains properties as parameters of the function, otherwise the value of the
function results in a constant which can be calculated before the search is executed. In this case, a
function is always searchable (it could also be sortable, but sorting by a constant is not reasonable).
The provided query functions can be categorized in the following groups:

• convert functions

• mathematical functions

• string functions

• date/timestamp functions

• list functions

• other functions

21

12.1. Convert Functions
There are 10 convert functions. These functions convert the type of an operand into another type.

12.1.1. ToString

NQL toString, str, s or §

Return type String

Parameters operand of any type except Blob

Available since 7.1

Description Converts given operand to string.

Examples

NQL Description

select toString(lifecyclestate) Converts property lifecyclestate to string

where s(lifecyclestate) = '1' Finds all resources with state finalized

orderby s(objectclass) Sorts by objectclass name

12.1.2. ToInteger

NQL toInteger or i

Return type Integer

Parameters operand of type String, Integer, Long, Double or Boolean

Available since 7.1

Description Converts given operand to integer.

Examples

NQL Description

select i(hasnote) Converts property hasnote to integer, all
resources having at least one note return 1, the
others return 0

12.1.3. ToLong

NQL toLong or l

22

Return type Long

Parameters operand of type String, Integer, Long, Double, Date, Timestamp or Boolean

Available since 7.1

Description Converts given operand to long.

Examples

NQL Description

select l(deletestate) Converts property deletestate to long

select l(initialcreation) Returns the milliseconds of initialcreation since
epoch

12.1.4. ToDouble

NQL toDouble or d

Return type Double

Parameters operand of type String, Integer, Long, Double or Boolean

Available since 7.1

Description Converts given operand to double.

Examples

NQL Description

select d(lifecyclestate) Converts property lifecyclestate to double

12.1.5. ToBoolean

NQL toBoolean or b

Return type Boolean

Parameters operand of type String, Integer, Long, Double, Boolean or Blob

Available since 7.1

Description Converts given operand to boolean.

Examples

23

NQL Description

select b(deletestate) Converts property deletestate to boolean, all
resources which have been deleted logically
return true

12.1.6. ToDate

NQL toDate

Return type Date

Parameters operand of type Date, Timestamp, Long or String

Available since 7.1

Description Converts given operand to date.

Examples

NQL Description

select toDate(creationdate) Converts property creationdate to date, which
means the time part is cut off

where toDate(initialcreation) = %today Finds all resources which have been created
today

12.1.7. ToDatetime

NQL toDatetime

Return type Timestamp

Parameters operand of type Date, Timestamp, Long or String

Available since 7.1

Description Converts given operand to timestamp.

Examples

NQL Description

select toDatetime(%today) Returns today with time midnight (redundant to
context variable %todayAtMidnight)

12.1.8. ToBlob

24

NQL toBlob

Return type Blob

Parameters operand of type String, Integer, Long, Double or Boolean

Available since 7.5

Description Converts given operand to blob. This function is not searchable and not
sortable.

Examples

NQL Description

select toBlob(entries((1, 2, 3))) Returns a blob (byte array) of length 3,
containing entries 1, 2 and 3

12.1.9. ToAQI

NQL toAQI

Return type AreaQualifiedIdentifier

Parameters operand of type String

aqiType of type Integer, Long or String, must not be a list

Available since 7.10

Description Converts given operand to area qualified identifier. The second
parameter determines the type of area qualified identifier, e.g. 0 or o for
an ObjectclassName, 1 or f for a FormName, 2 or t for a
FolderTemplateName, 3 or e for an ExpirationRuleName, 4 or r for a
RetentionRuleName and 5 or p for a ProcessDefinitionName. This
function is not searchable and not sortable.

Examples

NQL Description

select toAQI('F0', 0) Returns objectclass name F0

12.1.10. BaseConvert

NQL baseConvert

Return type String

Parameters number of type Integer, Long or String

25

sourceBase of type Integer or Long (optional, default 10 when number is
numeric, else 16)

targetBase of type Integer or Long (optional, default 16 when number is
numeric, else 10)

Available since 7.7

Description Converts given number from source base to target base, e.g. from base 10
to base 16 to get the hexadecimal representation. Supported are any
bases between 1 and 36 (including). This function is searchable and
sortable only for source base 10 and target base 16 and vice versa.

Examples

NQL Description

select
baseConvert(substring(storagelayerarcid, 8),
16, 2)

Converts the property storagelayerarcid from
hexadecimal to binary system; the first 8 signs
are omitted (otherwise, an overflow would
occur)

where baseConvert(substring(storagelayerarcid,
8)) > 1000

Finds all resources where the decimal value of
property storagelayerarcid is bigger than 1000;
the first 8 signs are omitted (otherwise, an
overflow would occur)

12.2. Mathematical Functions
There are 15 mathematical functions. Note that a mathematical function always returns a defined
value, as null values are replaced by the neutral element of the mathematical function, e.g. 0 for the
plus function or 1 for the product function.

12.2.1. Plus

NQL plus, sum or +*

Return type Double or Long, depending on type of parameters

Parameters operands… arbitrary number of operands of type Integer, Long or Double

Available since 7.1

Description Summates given operands.

Examples

NQL Description

select plus(1, 2, 3) Returns the sum of given operands, which is 6

26

NQL Description

select plus((1, 2, 3), 7, (5, 2)) Returns the sum of given operands, which is a
list with entries 13, 11 and 10

12.2.2. Minus

NQL minus or -*

Return type Double or Long, depending on type of parameters

Parameters minuend of type Integer, Long or Double

subtrahends… arbitrary number of operands of type Integer, Long or
Double

Available since 7.1

Description Subtracts given subtrahends from given minuend.

Examples

NQL Description

select minus(10, 3, 5) Returns 2

12.2.3. Product

NQL product, times or **

Return type Double or Long, depending on type of parameters

Parameters operands… arbitrary number of operands of type Integer, Long or Double

Available since 7.1

Description Multiplies given operands.

Examples

NQL Description

where product(i1, i2) > 10 Finds all resources where the product of integer
properties i1 and i2 is bigger than 10

orderby product(i1, i2) Sorts by product of integer properties i1 and i2

12.2.4. Quotient

NQL quotient, div or /

27

Return type Double

Parameters dividend of type Integer, Long or Double

divisor of type Integer, Long or Double

Available since 7.1

Description Divides given dividend by given divisor.

Examples

NQL Description

select div(1, 2) Returns 0.5

12.2.5. Modulo

NQL modulo, mod or %

Return type Double or Long, depending on type of parameters

Parameters dividend of type Integer, Long or Double

divisor of type Integer, Long or Double

Available since 7.1

Description Calculates remainder when integer dividing given dividend by given
divisor.

Examples

NQL Description

select mod(10, 3) Returns the remainder of integer dividing 10 by
3 which is 1

12.2.6. Sqrt

NQL sqrt or V

Return type Double

Parameters operand of type Integer, Long or Double

Available since 7.1

Description Calculates square root of given operand.

Examples

28

NQL Description

select sqrt(9) Returns 3

12.2.7. Pow

NQL pow or ^

Return type Double

Parameters base of type Integer, Long or Double

exponent of type Integer, Long or Double

Available since 7.1

Description Calculates the exponential power of given base and given exponent.

Examples

NQL Description

select pow(9, 0.5) This is equivalent to the former example with
function sqrt

select pow(2, 5) Returns 32

12.2.8. Log

NQL log

Return type Double

Parameters operand of type Integer, Long or Double

base of type Integer, Long or Double (optional, default 10)

Available since 7.12

Description Calculates the logarithm of given operand and given base.

Examples

NQL Description

select log(64, 2) Returns 6

select log(1000) Returns 3

29

12.2.9. Floor

NQL floor

Return type Long

Parameters operand of type Integer, Long or Double

Available since 7.1

Description Rounds down given operand.

Examples

NQL Description

select floor(5.638) Returns 5

12.2.10. Ceiling

NQL ceil or ceiling

Return type Long

Parameters operand of type Integer, Long or Double

Available since 7.5

Description Rounds up given operand.

Examples

NQL Description

select ceil(5.638) Returns 6

12.2.11. Round

NQL round

Return type Double or Long, depending on given precision

Parameters operand of type Integer, Long or Double

precision of type Integer or Long (optional, default 0)

Available since 7.5

Description Rounds given operand with given precision. A precision of 0 rounds to an
integer value; a positive value rounds the decimal part, while a negative
value rounds the integer part.

30

Examples

NQL Description

select round(5.638) Returns 6

select round(5.638, 1) Returns 5.6

select round(5.638, 2) Returns 5.64

select round(5.638, -1) Returns 10

12.2.12. Abs

NQL abs

Return type Double or Long, depending on type of operand

Parameters operand of type Integer, Long or Double

Available since 7.1

Description Eliminates the leading sign of given operand.

Examples

NQL Description

select abs(-7) Returns 7

12.2.13. Signum

NQL signum or sign

Return type Integer

Parameters operand of type Integer, Long or Double

Available since 7.5

Description Returns sign of given operand, which is -1 for negative values and 1 for
positive values, else 0.

Examples

NQL Description

select sign(-7) Returns -1

31

12.2.14. Sinus

NQL sinus or sin

Return type Double

Parameters operand of type Integer, Long or Double

Available since 7.5

Description Calculates the sinus of given operand.

Examples

NQL Description

select sin(3.14159265358) Returns 0

12.2.15. Avg

NQL avg

Return type Double

Parameters operands… arbitrary number of operands of type Integer, Long or Double

Available since 7.3

Description Calculates the average of given operands. Note that null values are
ignored.

Examples

NQL Description

select avg(1, null, 4) Returns 2.5 (null values are ignored)

12.3. String Functions
There are 20 string functions. These functions operate on query operands of type string.

12.3.1. Concat

NQL concat or ||

Return type String

Parameters operands… arbitrary number of operands of type String

Available since 7.1

32

Description Concats given operands. A null operand behaves like an empty string.

Examples

NQL Description

select ||(displayname, '.', fileextension) Returns the concatenation of property
displayname, a dot and property fileextension

12.3.2. Substring

NQL substring, substr or §[]

Return type String

Parameters operand of type String

start of type Integer or Long, must not be a list

len of type Integer or Long (optional, default is till the end of string), must
not be a list

Available since 7.1

Description Returns a substring within a string from given starting position,
optionally with given length. The index is 0-based.

Examples

NQL Description

where substr(displayname, 0, 1) = 'A' Finds all resources whose displayname begins
with an A

select substr(displayname, 1) Cuts off first character from displayname

12.3.3. Instring

NQL instring, instr or §?

Return type Integer

Parameters operand of type String

searchString of type String, must not be a List

fromIndex of type Integer or Long (optional, default is 0), must not be a list

lastIndex of type Boolean (optional, default is false), must not be a list

Available since 7.1

33

Description Identifies the position of a substring within a string, optionally with given
starting position and/or indication whether last occurrance is searched
for. The index is 0-based. If substring does not exist, -1 is returned. When
lastIndex is true, this function is not searchable and not sortable.

Examples

NQL Description

select instr(displayname, 'a') Returns the position of first character a in
displayname

select instr(displayname, 'a', 3) Returns the position of first character a in
displayname, beginning at the fourth character
(index is 0-based)

select instr(displayname, 'a', 0, true) Returns the position of last character a in
displayname, beginning at the first character
(index is 0-based)

12.3.4. Replace

NQL replace or →

Return type String

Parameters operand of type String

target (substring to be replaced) of type String, must not be a list

replacement of type String, must not be a list

regularExpressionPolicy of type Integer or Long (optional, default null),
must not be a list

Available since 7.1, third and fourth parameter since 7.5

Description Replaces a substring within a string by another string. The substring to be
replaced (target) may be a regular expression, in this case a regular
expression policy must be specified which can be 0 for policy replace first
or 1 for policy replace all. When a regular expression policy is specified,
this function is not searchable and not sortable.

Examples

NQL Description

select replace(displayname, 'xx', 'yyy') Replaces characters xx by characters yyy in
displayname

select replace(displayname, '[0-9]', 'x', 1) Replaces all numbers in displayname by
character x

34

NQL Description

select replace(displayname, '[0-9]', '', 0) Replaces first number in displayname by the
empty string

12.3.5. ReplaceCharacters

NQL replaceChars

Return type String

Parameters operand of type String

replace of type String

replacement of type String

Available since 7.12

Description Replaces characters within a string by other characters. The position of
the replace characters (the second parameter) correlates to the position
of the replacement characters (the third parameter), e.g. the first
character in the second parameter is replaced by the first character in the
third parameter. The length of the replace characters should normally
equal the length of the replacement characters. If the length of replace
characters is longer, then the extra characters are deleted. If the length of
replace characters is shorter, then the extra replacement characters are
ignored.

Examples

NQL Description

select replaceChars(displayname, 'abc', 'xyz') Replaces all characters 'a' by 'x', all characters 'b'
by 'y' and all characters 'c' by 'z' in displayname

select replaceChars(displayname, '0123456789',
'')

Replaces all digits in displayname by the empty
string, which means removes all digits from
displayname

select replaceChars('Three Chinese With a
Double Bass', 'aeiou', 'iiiii')

Returns Thrii Chinisi With i Diibli Biss

select replaceChars('1,000.1', ',.', '.,') Returns 1.000,1

12.3.6. Trim

NQL trim or][

Return type String

Parameters operand of type String

35

style of type Integer or Long (optional, default 0), must not be a list

character of type String (optional, default space character (blank)), must
not be a list

Available since 7.1, second and third parameter since 7.5

Description Returns given string operand trimmed. It is possible to execute function
trim (0), ltrim (negative number) or rtrim (positive number) by specifying
a style. Also the character to be trimmed may be specified. When a
character different from blank is specified or style is not a constant, this
function is not searchable and not sortable.

Examples

NQL Description

select trim(' abc ') Returns abc without leading and trailing blanks

select trim(' abc ', -1) Returns abc without leading blanks

select trim(' abc ', 1) Returns abc without trailing blanks

select trim('aaaHello Worldaa', 0, 'a') Returns Hello World

12.3.7. ToLower

NQL toLower or low

Return type String

Parameters operand of type String

locale of type String (optional, default null), must not be a list

Available since 7.1, second parameter since 7.5

Description Returns given string operand in lower case. It is also possible to specify a
locale. When a locale is specified, this function is not searchable and not
sortable.

Examples

NQL Description

select low('Hello World') Returns hello world

12.3.8. ToUpper

NQL toUpper or up

Return type String

36

Parameters operand of type String

locale of type String (optional, default null), must not be a list

Available since 7.1, second parameter since 7.5

Description Returns given string operand in upper case. It is also possible to specify a
locale. When a locale is specified, this function is not searchable and not
sortable.

Examples

NQL Description

select up('Hello World') Returns HELLO WORLD

12.3.9. Capitalize

NQL capitalize

Return type String

Parameters operand of type String

Available since 7.12

Description Returns given string operand where all words are capitalized, which
means the first character of all words is in upper case while all following
characters are in lower case. A new word is identified by a delimiter
which is a blank or a special character.

Examples

NQL Description

select capitalize('hello woRLD') Returns Hello World

select capitalize('abc-def/ghi') Returns Abc-Def/Ghi

12.3.10. Reverse

NQL reverse

Return type String

Parameters operand of type String

Available since 7.5

Description Reverses given operand.

37

Examples

NQL Description

select reverse('abc') Returns cba

12.3.11. Replicate

NQL replicate

Return type String

Parameters operand of type String

number of type Integer or Long

Available since 7.5

Description Replicates given operand for specified times.

Examples

NQL Description

select replicate('please ', 3) Returns please please please

12.3.12. Pad

NQL pad

Return type String

Parameters operand of type String

length of type Integer or Long

style of type Integer or Long (optional, default -1 (lpad-style))

pad of type String (optional, default ' ' (blank))

Available since 7.12

Description Pads given string operand. The length parameter determines the length
of returned string, while the pad parameter determines the string which
is padded to given operand. The style operand determines, whether the
operand is padded on the left or right hand side. A positive number
results in a right padded operand, otherwise the operand is left padded.

Examples

NQL Description

select pad('123', 7, 0, '0') Returns 0000123

38

NQL Description

select pad('123', 5, 1, '+') Returns 123++

12.3.13. Base64

NQL base64

Return type String

Parameters operand of type String

encode of type Boolean (optional, default true (encoding))

urlEncoded of type Boolean (optional, default false)

Available since 7.14, third parameter since 7.16

Description Encodes or decodes given string operand to respectively from base 64
encoding. It is also possible to specify, whether base 64 code is url-
encoded. This function is not searchable and not sortable.

Examples

NQL Description

select base64(displayname) Returns base 64 encoded displayname

select base64('SGVsbG8=', false) Returns Hello

select base64('SGVsbG8%3d', false, true) Returns Hello

12.3.14. Hash

NQL hash

Return type String

Parameters operand of type String

algorithm of type Integer or Long (optional, default 0 (MD5))

Available since 7.14

Description Executes given hash algorithm on given string operand. The algorithm
must be a numeric value between 0 and 4, where 0 represents MD5, 1
represents SHA-1, 2 represents SHA-256, 3 represents SHA-384 and 4
represents SHA-512. This function is not searchable and not sortable.

Examples

39

NQL Description

select hash(displayname) Returns MD5 hash of property displayname

select hash('Hello World', 2) Returns
a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9
ad9f146e

12.3.15. StringFormat

NQL stringFormat

Return type String

Parameters locale of type String

format of type String

parameters… arbitrary number of parameters of any type

Available since 7.7

Description Formats the given string format operand in given locale, using given
parameters. The string is formatted by using static format method in
java.lang.String class. The locale must be a string in ISO639 format, e.g.
'en_US' or 'de'. If locale is null the default locale takes effect which is the
locale of current session if provided, else the locale of the default
dictionary if existing, else the default language of the jvm. This function is
not searchable and not sortable.

Examples

NQL Description

stringFormat(null, '%07d', 123) Returns 0000123 (seven-digit number with
leading zeros)

stringFormat('de', '%,d', contentlength) Returns property contentlength containing
thousands separator in German style

stringFormat('de', '%,d KB',
round(div(contentlength, 1024)))

Returns property contentlength in KB in German
style

stringFormat(%clientLocale, '%,.2f MB',
div(contentlength, ^(1024, 2)))

Returns property contentlength in MB in style of
current locale, rounded to two decimal digits

stringFormat('en', '%,.3f', myDoubleProperty) Returns property myDoubleProperty containing
thousands and decimal separator in English
style, rounded to three decimal digits

40

12.3.16. Soundex

NQL soundex

Return type String

Parameters operand of type String

Available since 7.9

Description Returns the soundex-code of given operand. The soundex function can be
used to search for similar sounding entries. It returns a four character
string containing the phonetic representation of its input parameter.
Words that are spelled differently, but sound alike, should match to the
same return value, which makes it possible to perform a similarity
search. Note that the soundex algorithm was invented for the English
language but should also produce good results in related languages like
German.

Examples

NQL Description

where soundex(displayname) = soundex('Smiths') Finds resources where displayname sounds like
Smiths

12.3.17. SoundexDifference

NQL soundexDifference

Return type Integer

Parameters lhsOperand of type String

rhsOperand of type String

Available since 7.9

Description Returns the soundex difference between given operands. The soundex
function returns a four character string containing the phonetic
representation of its input parameter. The soundex difference function
compares two results of a soundex function, for each character that is
identical the return value of the soundex difference function is increased
by one. Thus, the returned value is a number between 0 and 4 where 4 is
the highest similarity. Note that the soundex algorithm was invented for
the English language but should also produce good results in related
languages like German.

Examples

41

NQL Description

where soundexDifference(displayname, 'Smiths')
> 2

Finds resources with a soundex difference of 3
or 4

12.3.18. EditDistance

NQL editDistance

Return type Integer

Parameters lhsOperand of type String

rhsOperand of type String

caseInsensitive of type Boolean (optional, default false), must not be a list

Available since 7.10, third parameter since 7.12

Description Returns the number of steps which are necessary to convert one string
into another by using the Levenshtein algorithm, so it can be used to
search for entries with a specified similarity. It is possible to specify,
whether comparison is case sensitive or not. When third parameter is
specified, this function is not searchable and not sortable.

Examples

NQL Description

where editDistance(displayname, 'Smiths') <= 2 Finds resources with an edit distance of 0, 1 or 2

12.3.19. Similarity

NQL similarity

Return type Double

Parameters lhsOperand of type String

rhsOperand of type String

caseInsensitive of type Boolean (optional, default false), must not be a list

Available since 7.10, third parameter since 7.12

42

Description Returns a value between 0 and 1 where 0 means the two given strings are
totally different and 1 means the two given strings are identical. It is
possible to specify, whether comparison is case sensitive or not. The
algorithm to determine similarity of two strings is: 1 -
editDistance(string1, string2) / max(len(string1), len(string2)). This
function can be used to search for entries with a specified similarity. Note
that for PostgreSQL an internal similarity algorithm can be used instead
of the Levenshtein algorithm (see configuration of DbSetting) to increase
performance. When third parameter is specified, this function is not
searchable and not sortable.

Examples

NQL Description

where similarity(displayname, 'Smiths') >= 0.6 Finds resources with a similarity between 0.6
and 1

12.3.20. ColognePhonetic

NQL colognePhonetic

Return type String

Parameters operand of type String

Available since 7.10

Description Returns a string containing the phonetic representation of its input
parameter. Words that are spelled differently, but sound alike, should
match to the same return value, which makes it possible to perform a
similarity search. Note that in contrast to the soundex function, the
cologne phonetic function is optimized for the German language. This
function is not searchable and not sortable (it may be used for a
similarity search though by defining appropriate value properties).

Examples

NQL Description

select colognePhonetic(displayname) Returns the cologne phonetic code of property
displayname

12.4. Date/Timestamp Functions
There are 12 date/timestamp functions. These functions operate on query operands of type date or
timestamp.

43

12.4.1. Year

NQL year

Return type Integer

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the year from given date/datetime operand.

Examples

NQL Description

select year(initialcreation) Returns the year of creation of a resource

where year(creationdate) = year(%today) Finds resources where current version has been
created in current year

12.4.2. Month

NQL month

Return type Integer

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the month from given date/datetime operand.

Examples

NQL Description

select month(initialcreation) Returns the month of creation of a resource as a
value between 1 and 12

12.4.3. Day

NQL day

Return type Integer

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the day from given date/datetime operand.

44

Examples

NQL Description

select day(initialcreation) Returns the day of creation of a resource as a
value between 1 and 31

12.4.4. Hour

NQL hour

Return type Integer

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the hour from given date/datetime operand.

Examples

NQL Description

select hour(%now) Returns the hour of current time as a value
between 0 and 23

12.4.5. Minute

NQL minute

Return type Integer

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the minute from given date/datetime operand.

Examples

NQL Description

select minute(%now) Returns the minute of current time as a value
between 0 and 59

12.4.6. Second

NQL second

Return type Integer

45

Parameters operand of type Date or Timestamp

Available since 7.1

Description Extracts the second from given date/datetime operand.

Examples

NQL Description

select second(%now) Returns the second of current time as a value
between 0 and 59

12.4.7. DateExtract

NQL dateExtract

Return type Integer

Parameters operand of type Date or Timestamp

extract of type Integer or Long, must not be a list

Available since 7.3

Description Extracts specified part from given date/datetime operand. The given
extract must be a numeric value between 0 and 5 where every number
represents a different part of the date/datetime operand. A value 0
extracts the day of the week, e.g. in Germany for Monday the value 1 is
returned. A value 1 extracts the day of the week in a month, e.g. value 2 is
returned for the second Monday of a month. A value 2 extracts the day of
the year, that is the number of days which have passed since the
beginning of the year. A value 3 extracts the week of the month, e.g. value
1 is returned for the first week of a month. A value 4 extracts the week of
the year, e.g. value 2 is returned for the second week of a year. A value 5
extracts the quarter of the year, e.g. value 3 is returned for months July,
August and September. When parameter extract is not a constant, this
function is not searchable and not sortable.

Examples

NQL Description

select dateExtract(%today, 0) Returns the day of the week as a value between
1 and 7

select dateExtract(%today, 1) Returns the day of the week in a month as a
value between 1 and 5

select dateExtract(%today, 2) Returns the day of the year as a value between 1
and 366

46

NQL Description

select dateExtract(%today, 3) Returns the week of the month as a value
between 1 and 5

select dateExtract(%today, 4) Returns the week of the year as a value between
1 and 53

select dateExtract(%today, 5) Returns the quarter of the year as a value
between 1 and 4

where dateExtract(initialcreation, 5) = 1 Finds resources which have been created in the
first quarter

12.4.8. DateRound

NQL dateRound

Return type Date or Timestamp

Parameters date of type Date or Timestamp

roundingPolicy of type Integer or Long

businessCalendar of type String (optional, default null)

Available since 7.10

Description Rounds given date/datetime by using specified rounding policy. The
rounding policy is represented by a numeric value. If rounding policy is 0
or null, the returned date is not altered. If rounding policy is a negative
number, the returned date is rounded down. If rounding policy is a
positive number, the returned date is rounded up. The absolute number
of the rounding policy determines the kind of rounding, it must lie
between 1 and 8, representing rounding by year, month, week, day, hour,
minute, second or quarter. When rounding up and the given
date/datetime is at the beginning of specified rounding part, the returned
date is unaltered, e.g. rounding up by year on January 1st returns given
date/datetime unaltered. Note that it is also possible to specify a business
calendar used for rounding. When a business calendar is specified, only
rounding by day is supported, so a negative rounding policy would result
in rounding down to the beginning of the business day and a positive
rounding policy would result in rounding up to the end of the business
day. This function is not searchable and not sortable.

Examples

NQL Description

select dateRound(%today, 1) Rounding up current date to the beginning of
the next year

47

NQL Description

select dateRound(%today, -1) Rounding down current date to the beginning of
current year

select dateRound(%today, 2) Rounding up current date to the beginning of
the next month

select dateRound(%today, -2) Rounding down current date to the beginning of
current month

select dateRound(%today, 3) Rounding up current date to the beginning of
the next week

select dateRound(%now, 4) Rounding up current datetime to the beginning
of the next day

select dateRound(%now, 5) Rounding up current datetime to the beginning
of the next hour

select dateRound(%now, 6) Rounding up current datetime to the beginning
of the next minute

select dateRound(%now, 7) Rounding up current datetime to the beginning
of the next second

select dateRound(%today, 8) Rounding up current date to the beginning of
the next quarter

select dateRound(%now, -1,
'NordrheinWestfalen')

Rounding down current datetime to the
beginning of current business day, regarding
business calendar with name
'NordrheinWestfalen'

12.4.9. DateFormat

NQL dateFormat

Return type String

Parameters operand of type Date or Timestamp

format of type String, must not be a list

locale of type String (optional, default null), must not be a list

Available since 7.1, third parameter since 7.3

Description Formats given date/datetime operand in given string format. If format is
null the default format 'yyyy-MM-dd HH:mm:ss' takes effect. This
function is not searchable and not sortable.

Examples

48

NQL Description

select dateFormat(initialcreation,'dd. MMMM
yyyy')

Returns date of initial creation in given format

select dateFormat(initialcreation,'EEEE','fi') Returns the name of the day of initial creation in
Finnish language

12.4.10. LocaleDateFormat

NQL localeDateFormat

Return type String

Parameters operand of type Date or Timestamp

dateStyle of type Integer or Long (optional, default 2), must not be a list

timeStyle of type Integer or Long (optional, default 2), must not be a list

locale of type String (optional, default null), must not be a list

Available since 7.1

Description Formats given date/datetime operand in given style and locale. The style
must be a numeric value between 0 and 5, where 0 means full style, 1
means long style, 2 means medium style and 3 means short style. Style 4
returns the name of the day and style 5 returns the name of the month.
The locale must be a string in ISO639 format, e.g. 'en_US' or 'de'. If style
and/or locale are null default values take effect. The default value for date
and time style is 2 which means medium style. The default value for
locale is the locale of current session if provided, else the locale of the
default dictionary if existing, else the default language of the jvm. Note
that when time style is specified, the locale must also be specified. This
function is not searchable and not sortable.

Examples

NQL Description

select localeDateFormat(initialcreation) Returns date of initial creation in default format
(medium style) and in default language

select localeDateFormat(initialcreation, 0,
'fr')

Returns date of initial creation in full style in
French language

select localeDateFormat(initialcreation, 0, 2,
'fi')

Returns date of initial creation in full date style
and medium time style in Finnish language

select localeDateFormat(initialcreation, 4,
'en')

Returns the name of the day of initial creation in
English language

49

12.4.11. DateAdd

NQL dateAdd

Return type Date or Timestamp

Parameters date of type Date or Timestamp

summand of type Integer or Long

datePart of type Integer or Long (optional, default 2), must not be a list

businessCalendar of type String (optional, default null), must not be a list

roundingPolicy of type Integer or Long (optional, default null), must not
be a list, see also DateRound function

Available since 7.2, fourth parameter since 7.5, fifth parameter since 7.9

Description Adds a number to given date part of given date. The date part must be a
numeric value between 0 and 5, representing part year, month, day, hour,
minute or second. If date part is null the default date part day
(represented by value 2) takes effect. If an optional business calendar is
specified, only business times and dates are considered. It is also possible
to specify a rounding policy. When a business calendar and/or rounding
policy is specified, this function is not searchable and not sortable.

Examples

NQL Description

select dateAdd(%today, 5, 1) Returns a date where 5 months are added to the
current date

select dateAdd(initialcreation, -7) Returns a datetime where 7 days are subtracted
from the date of initial creation

select dateAdd(creationdate, 5, 3,
'NordrheinWestfalen')

Returns a datetime where 5 business hours are
added to creation date, regarding business
calendar with name 'NordrheinWestfalen'

where initialcreation >= dateAdd(%today, -7) Finds resources which have been created in the
last seven days

12.4.12. DateDiff

NQL dateDiff

Return type Long

Parameters startDate of type Date or Timestamp

endDate of type Date or Timestamp

datePart of type Integer or Long (optional, default 2), must not be a list

50

businessCalendar of type String (optional, default null), must not be a list

Available since 7.2, fourth parameter since 7.5

Description Calculates the difference between two dates concerning given date part.
The date part must be a numeric value between 0 and 5, representing
part year, month, day, hour, minute or second. If date part is null the
default date part day (represented by value 2) takes effect. If an optional
business calendar is specified, only business times and dates are
considered. When a business calendar is specified, this function is not
searchable and not sortable.

Examples

NQL Description

select dateDiff(initialcreation, %today, 1) Returns the difference in months between the
date of initial creation and the current date

select dateDiff(initialcreation, archivedate) Returns the difference in days between the date
of initial creation and the archive date

select dateDiff(initialcreation, creationdate,
2, 'NordrheinWestfalen')

Returns the difference in business days between
the date of initial creation and the creation date
of the current version, regarding business
calendar with name 'NordrheinWestfalen'

where dateDiff(initialcreation, creationdate)
> 10

Finds resources where the difference of the date
of initial creation and the creation date of the
current version is greater than 10 days

12.5. List Functions
There are 12 list functions. These functions operate on multi-value query operands.

12.5.1. ConcatLists

NQL concatLists or ++

Return type List of any type, depending on type of parameters

Parameters lists… arbitrary number of lists of any (but all the same) type

Available since 7.1

Description Concatenates all list operands. The resulting list contains all entries of the
given lists. This function is not searchable and not sortable.

51

Examples

NQL Description

select ++(%currentGroupPrincipalIds,
%currentPositionPrincipalIds,
(%currentUserPrincipalId))

Returns a list which contains the group ids, the
position ids and the user id of the current
principal; note that the context variable
%currentUserPrincipalId must be embraced by
brackets to cast the single value to a list

where exists(assignedpooledorgentityid in
++(%currentGroupPrincipalIds,
%currentPositionPrincipalIds))

Finds workflow instances where at least one of
current principal’s positions or groups is in
assigned pool

12.5.2. ListEntry

NQL listEntry, entry or []

Return type Any type, depending on type of first parameter

Parameters listOperand of type list of any type

listIndex of type Integer or Long

Available since 7.1

Description Extracts an entry from given list operand. The list index is 0-based. If list
index does not exist, null is returned. When used in the where clause, this
function must not be nested in other functions.

Examples

NQL Description

select listEntry(%currentGroupPrincipalIds, 0) Returns the id of the first group of current
principal

where entry(itemcontenttype, 0) = 'text/plain' Finds resources where first content item is of
type text/plain

12.5.3. ListIndex

NQL listIndex or []?

Return type Integer

Parameters listOperand of type list of any type

listEntry of any type, corresponding to type of list operand

Available since 7.1

52

Description Identifies the (first) index of given entry from given list operand. The
returned list index is 0-based. If list entry does not exist, -1 is returned.
When used in the where clause, this function must not be nested in other
functions.

Examples

NQL Description

select listIndex(('a','b','c'), 'b') Returns 1

12.5.4. ListLength

NQL listLength or []!

Return type Integer

Parameters listOperand of type list of any type

Available since 7.1

Description Returns the size of given list operand. When used in the where clause,
this function must not be part of a case condition.

Examples

NQL Description

select listLength(%currentGroupPrincipalIds) Returns the number of groups of current
principal

where listLength(storagelayerarcid) > 0 Finds resources which reference an nscale
Server Storage Layer document

12.5.5. Sublist

NQL sublist

Return type List of any type, depending on type of first parameter

Parameters listOperand of type list of any type

start of type Integer or Long, must not be a list

len of type Integer or Long (optional, default till end of list), must not be a
list

Available since 7.1

Description Returns a sublist of given list operand, determined by given starting
index and optionally given length. The index is 0-based. When used in the
where clause, this function must not be nested in other functions.

53

Examples

NQL Description

select sublist(('a','b','c','d','e'), 2) Returns a list with entries 'c', 'd' and 'e'

select sublist(('a','b','c','d','e'), 2, 2) Returns a list with entries 'c' and 'd'

where exists(sublist(itemcontenttype, 1) =
'text/plain')

Finds resources with a content item of type
text/plain, first content item omitted

12.5.6. ListEntries

NQL listEntries or entries

Return type List of any type, depending on type of parameter

Parameters listOperand of type list of any type

Available since 7.3

Description May be used as parameter of a function with an arbitrary number of
parameters, which means this function must always be nested. The list
entries function provides all entries of given list operand. This function is
not searchable and not sortable.

Examples

NQL Description

select plus(entries(itemlength)) Returns the sum of all entries of multi-value
property itemlength

select max(entries(itemlength)) Returns the maximum value of all entries of
multi-value property itemlength

select avg(entries(itemlength)) Returns the average value of all entries of multi-
value property itemlength

12.5.7. ToFlat

NQL toFlat or _

Return type String

Parameters listOperand of type list of any type

delimiter of type String (optional, default ; (semicolon plus blank))

lastDelimiter of type String (optional, default null)

Available since 7.1, third parameter since 7.12

54

Description Concatenates the entries of given list operand to a string with given
delimiter. If delimiter is omitted, the string '; ' is used as default delimiter.
If parameter lastDelimiter is provided, the last two entries are delimited
by given string. This function is not searchable and not sortable.

Examples

NQL Description

select _(itemlength) Returns the length of all content items, delimited
by '; '

select toFlat(%currentGroupPrincipalIds, '#') Returns the ids of the groups of current
principal, delimited by '#'

select
toFlat(pidResolve(%currentGroupPrincipalIds),
', ', ' and ')

Returns the names of the groups of current
principal, delimited by ', ' respectively ' and ' for
the last two entries

12.5.8. Tokenize

NQL tokenize

Return type List of String when operand is of type String, List of Integer when
operand is of type Blob

Parameters operand of type String or Blob

delimiter of type String (optional, default ; (semicolon)), must not be a
list, must not be specified when operand is of type Blob

Available since 7.3

Description Tokenizes given operand by given delimiter to a list. If delimiter is
omitted, the string ';' is used as default delimiter. This function is not
searchable and not sortable.

Examples

NQL Description

select tokenize(%clientIPAddress, '.') Returns a list whose entries are the parts of the
ip address of current client

12.5.9. UniqueList

NQL uniqueList

Return type List of any type, depending on type of first parameter

55

Parameters listOperand of type list of any type

excludeNull of type Boolean (optional, default false), must not be a list

Available since 7.8

Description Eliminates duplicate entries from a list. It is also possible to specify,
whether null values are excluded from the list. This function is not
searchable and not sortable.

Examples

NQL Description

select uniqueList(('red', 'yellow', 'red')) Returns a list with the two entries 'red' and
'yellow'

12.5.10. SortList

NQL sortList

Return type List of any type, depending on type of first parameter

Parameters listOperand of type list of any type except blob

ascending of type Boolean (optional, default true), must not be a list

nullPosition of type Integer or Long (optional, default 1), must not be a
list

caseInsensitive of type Boolean (optional, default false), must not be a list

Available since 7.8, fourth parameter since 7.12

Description Sorts given list. It is possible to specify, whether list is sorted ascending or
descending and whether sorting is case sensitive or not. It is also possible
to specify, where null values are positioned, e.g. at the end or at the
beginning of the list or whether null values are filtered. Positive values
determine that null values are considered as greatest values. Negative
values determine that null values are considered as smallest values. A
value of 0 determines that null values aren’t sorted (they are omitted).
This function is not searchable and not sortable.

Examples

NQL Description

select sortList(itemlength) Returns multi-value property itemlength sorted
in ascending order

select sortList(itemlength, false) Returns multi-value property itemlength sorted
in descending order

56

NQL Description

select sortList(itemlength, true, 1) Returns multi-value property itemlength sorted
in ascending order where null values are
positioned at the end of the list

12.5.11. ReduceList

NQL reduceList

Return type List of any type, depending on type of first parameter

Parameters listOperand of type list of any type

excludeOperands… arbitrary number of operands of the same type as the
list entries, none of these operands must be a list

Available since 7.8

Description Eliminates given operands from given list. This function is not searchable
and not sortable.

Examples

NQL Description

select reduceList(('red', 'blue', 'green'),
'red', 'yellow')

Returns a list with the two entries 'blue' and
'green'

select reduceList(itemlength,
entries(itemlength))

Returns an empty list (all entries from multi-
value property itemlength are eliminated from
itself)

12.5.12. ToList

NQL toList

Return type List of any type, depending on type of parameters

Parameters operands… arbitrary number of operands of any (but all the same) type

Available since 7.13

Description Returns a list which contains all given operands. This function is not
searchable and not sortable.

Examples

NQL Description

select toList(1, 2, 3) Returns a list with the three entries 1, 2 and 3

57

NQL Description

select toList('a', 'b', 'c') Returns a list with the three entries a, b and c

12.6. Other Functions
There are 27 more functions which could not be categorized in the sections above.

12.6.1. Null

NQL null

Return type Null

Parameters

Available since 7.1

Description The null function always returns null. Note that the null function is the
only function where brackets may be omitted.

Examples

NQL Description

select null Returns null

select toLower('Hello World', null) Returns hello world

12.6.2. NullIf

NQL nullIf

Return type Type of left hand side parameter

Parameters lhsOperand of type Integer, Long, Double, Boolean, Date, Timestamp or
String

rhsOperand of type Integer, Long, Double, Boolean, Date, Timestamp or
String

Available since 7.13

Description Returns null, if the two parameters are equal, else the left hand side
parameter is returned.

Examples

58

NQL Description

select nullIf(1, 1) Returns null

select nullIf(displayname, 'Hello World') Returns null, if displayname equals 'Hello
World', else the displayname

12.6.3. Coalesce

NQL coalesce

Return type Any type, depending on type of parameters

Parameters operands… arbitrary number of operands of any (but all the same) type

Available since 7.1

Description Returns the first operand which is not null.

Examples

NQL Description

select coalesce(usercommonname, username,
displayname)

Returns usercommonname if not null, else
username if not null, else displayname

12.6.4. Length

NQL length, len or !

Return type Integer

Parameters operand of type Integer, Long, Double, Boolean, String or Blob

Available since 7.1

Description Returns the length of given operand.

Examples

NQL Description

select len(displayname) Returns the number of characters of the
displayname

where len(displayname) > 10 Finds resources where the length of the
displayname is greater than 10

59

12.6.5. Max

NQL max

Return type Any type, depending on type of parameters

Parameters operands… arbitrary number of operands of type Integer, Long, Double,
Boolean, Date, Timestamp or String

Available since 7.3

Description Returns the maximum value of an arbitrary number of operands. An
operand which evaluates to null is ignored. If all operands are null, null is
returned. Note that all operands must be of same type.

Examples

NQL Description

select max(10, 3, 2) Returns 10

12.6.6. Min

NQL min

Return type Any type, depending on type of parameters

Parameters operands… arbitrary number of operands of type Integer, Long, Double,
Boolean, Date, Timestamp or String

Available since 7.3

Description Returns the minimum value of an arbitrary number of operands. An
operand which evaluates to null is ignored. If all operands are null, null is
returned. Note that all operands must be of same type.

Examples

NQL Description

select min(10, 3, 2) Returns 2

12.6.7. Case

NQL case or |=

Return type Any type, depending on type of parameters

Parameters condition to be evaluated

operandTrue of any type

60

operandFalse of any type

Available since 7.1

Description Evaluates a condition (see where clause) and returns either the first or
the second operand, depending on the result of the condition. Note that
the true and false operand must be of same type. When the case function
is part of the where clause, the result of the function must not be a list.

Examples

NQL Description

select case(exists(colour = 'red'), 'I am
red', 'I am not red')

Returns 'I am red' if the multi-value property
colour contains the entry 'red', else 'I am not red'
is returned

select case(int1 > 10 and int1 < 20, null,
displayname)

Returns null if user defined property int1 is
greater than 10 and smaller than 20, else the
display name is returned

select case int1 > 10 and int1 < 20 then null
else displayname

Alternative representation of the statement
above

select |= int1 > 10 and int1 < 20 ? null :
displayname

Yet another alternative; note that for this
notation brackets must be omitted

12.6.8. Switch

NQL switch or |<

Return type Any type, depending on type of parameters

Parameters switchOperand of any type

switchOperator operator (optional, default = (the equals-operator))

operands… arbitrary number of operands

Available since 7.5

61

Description Evaluates an expression and returns the first value for which the
expression is true. The switch function contains three parameters: a
switch operand, an optional operator and an array of operands. The
switch operand is compared with other values. The operator defines the
kind of comparison, the default operator is equals. The array of operands
consists of tuples (ordered pairs), where the first operand of a tuple is
compared with the switch operand and the second operand of a tuple is
the value which is returned when a comparison returns true. If the first
operand of a tuple is null, this is considered as the default tuple whose
value is returned when no other expression returns true. The switch
function is rather redundant to the case function, but it is more concise.
Note that operator between is not supported. When the switch function is
part of the where clause, the switch operand and the result of the
function must not be a list.

Examples

NQL Description

select switch(resourcetype ? 1='Folder',
2='Document', 3='Link')

Returns 'Folder', 'Document' or 'Link', depending
on the type of resource

select switch(fulltextstate >= ? 16='Fatal',
8='Error', 1='ToBeIndexed', 0='Indexed')

Returns an aggregated fulltext state

select switch(year(initialcreation) ?
year(%today)='New', null='Old')

Returns 'New' for resources which have been
created in current year, else 'Old'

select switch(displayname is null ?
true='Empty', null=displayname)

Returns 'Empty' if displayname is null, else the
displayname

select switch(hasnote ? true='I have a note',
false='Sorry, no note')

Returns indication whether resource has a note
as text

select switch(plus(R, L) ? J=true, null=false) Returns true if R + L = J, else false

12.6.9. Random

NQL random or rnd

Return type Double

Parameters factor of type Integer or Long (optional, default 100)

offset of type Integer or Long (optional, default 0)

Available since 7.1, first and second parameter since 7.5

62

Description Returns a random number between 0 (inclusive) and 100 (exclusive) by
default. The upper and lower border can be adjusted by specifying a
factor and an offset. The default factor is 100, specifying another value
will increase or decrease the upper border. The specified offset is
subtracted from factor and added to the random number, e.g. a factor of
50 and an offset of 10 will return a random number between 10
(inclusive) and 50 (exclusive). This function is not searchable and not
sortable.

Examples

NQL Description

select rnd() Returns a random number between 0 and 100

select random(10) Returns a random number between 0 and 10

select random(10, 5) Returns a random number between 5 and 10

12.6.10. Translate

NQL translate or l10n

Return type String

Parameters operand of type String

locale of type String (optional, default null), must not be a list

Available since 7.1

Description Translates the given operand in given locale. The locale must represent
an existing dictionary of the configuration, e.g. 'en_US' or 'de'. If the given
locale does not exactly match the name of a dictionary, the next best
dictionary is chosen, e.g. when locale 'de_AT' is requested, assuming there
is no Austrian dictionary but there is a German dictionary 'de', then 'de' is
taken as dictionary (and vice versa). If given locale is null the default
locale takes effect which is the locale of current session if provided, else
the locale of the default dictionary if existing, else the default language of
the jvm. If such a dictionary does not exist, the operand is not translated
and is returned unmodified. Otherwise the given operand is taken as a
key value of the determined dictionary, the returned value is the
corresponding translated phrase. The translate function is not sortable.
When it contains any properties, its use in the where clause is restricted
by several constraints, e.g. it cannot be used in a NOT-Operation or in a
NULL-expression or when the condition contains any OR-operations or in
an EXISTS-operation when in-operator is used. Note also that a
translation must exist (i.e. an entry in requested dictionary) in order that
a row can be found (no fallback to requested key).

63

Examples

NQL Description

select translate('Decision', 'de_AT') Returns 'Entscheidung' (the translation for key
'Decision' of dictionary 'de_AT' if existing, else
'de')

12.6.11. PrincipalIdResolver

NQL pidResolve

Return type String

Parameters operand of type String

style of type Integer or Long (optional, default 3), must not be a list

Available since 7.1, styles added in different versions

Description Formats one or more principal ids in given style. The style must be a
numeric value between 0 and 9, where 0 means name style (e.g. 'admin'),
1 means full name style (e.g. 'admin@nscale'), 2 means common name
style (e.g. 'nscale Administrator') and 3 means common name style with
fallback to name style. The latter one means, the common name is
returned if it is not null, else the name is returned. Style 4 is the same as
style 3 except that for a non existing principal id the principal id is
returned instead of 'unknown'. Style 5 returns the domain name and style
6 returns the type of the principal. Style 7 returns the referenced
principal which is the default position in case of a user and the associated
user in case of a position. Also style 7 resolves a virtual principal. Style 8
resolves a full name to a principal id (priority is user before position
before group). Style 9 resolves a virtual principal, for non-virtual
principals the given value is returned unaffected. If style is null or an
undefined value, the common name with fallback style takes effect as
default. The principal id resolver function is not allowed in sort order
items. When it contains any properties, its use in a condition is restricted
by several constraints, e.g. it cannot be used in a NOT-Operation or in a
NULL-expression or when the condition contains any OR-operations or in
an EXISTS-operation when in-operator is used. Note also that deleted
principals cannot be found.

Examples

NQL Description

select pidResolve(initialcreator) Returns the initial creator in default style

select pidResolve(initialcreator, 1) Returns the initial creator in full name style

64

NQL Description

where pidResolve(%currentUserPrincipalId, 5) =
'nscale'

Finds all resources when current principal
belongs to domain 'nscale'

where pidResolve('admin@nscale', 8) =
%currentUserPrincipalId

Finds all resources when current principal is
'admin@nscale'

12.6.12. GroupResolver

NQL groupResolve

Return type List of String

Parameters operand of type String, must not be a list

flat of type Boolean (optional, default false), must not be a list

activeOnly of type Boolean (optional, default false), must not be a list

Available since 7.17

Description Returns all group ids of given principal id, representing a user, position
or group. It is also possible to determine whether groups are considered
flat or hierarchical and whether all or only active groups are returned.
This function is not searchable and not sortable.

Examples

NQL Description

select groupResolve(%currentUserPrincipalId) Returns ids of all groups of current user

select
pidResolve(groupResolve(%currentUserPrincipalI
d, true))

Returns names of all explicit assigned groups of
all positions of current user

select groupResolve(%currentUserPrincipalId,
true, true)

Returns ids of all explicit assigned groups of all
positions of current user which are active

12.6.13. CompetenceResolver

NQL competenceResolve

Return type List of String

Parameters operand of type String, must not be a list

type of type Integer or Long, must not be a list

implicit of type Boolean (optional, default false), must not be a list

activeOnly of type Boolean (optional, default false), must not be a list

Available since 7.17

65

Description Returns all principal ids where given principal has a competence of given
type for. Given principal id may represent a user, position or group. If
given principal id represents a user, all positions of the user are
considered (when active flag is set to true, only active positions are
considered). The type must be a numeric value between 1 and 6 where 1
means head, 2 means proxy, 3 means owner, 4 means local group admin,
5 means manager and 6 means agent competence. For competences of
type head, proxy and manager it is possible to determine, whether
implicit competences are considered. If set to true, for type proxy also
transitive proxies are returned. For type head and manager also
members of groups are returned (flat for head and hierarchical for
manager). It is also possible to determine whether only active
competences are considered. This function is not searchable and not
sortable.

Examples

NQL Description

select
competenceResolve(%currentUserPrincipalId, 2)

Returns ids of all explicit proxied principals of
current user

select
pidResolve(competenceResolve(%currentUserPrinc
ipalId, 1, true))

Returns names of all implicit headed principals
of current user

select
competenceResolve(%currentDefaultPositionPrinc
ipalId, 5, true, true)

Returns ids of all implicit managed principals
where current user’s default position has an
active competence for

12.6.14. CompetenceReferenceResolver

NQL competenceReferenceResolve

Return type List of String

Parameters operand of type String, must not be a list

type of type Integer or Long, must not be a list

activeOnly of type Boolean (optional, default false), must not be a list

Available since 8.4

66

Description Returns all ids of principals who own a competence of given type for
given principal. That means, this function is the inverse function of the
competence resolver function. Given principal id may represent a user,
position or group. If given principal id represents a user, all positions of
the user are considered (when active flag is set to true, only active
positions are considered). The type must be a numeric value between 1
and 6 where 1 means head, 2 means proxy, 3 means owner, 4 means local
group admin, 5 means manager and 6 means agent competence. It is also
possible to determine whether only active competences are considered.
This function is not searchable and not sortable.

Examples

NQL Description

select
competenceReferenceResolve(%currentUserPrincip
alId, 2)

Returns ids of all proxies of current user

select
pidResolve(competenceReferenceResolve(%current
UserPrincipalId, 1, true))

Returns names of all active head principals of
current user

select
competenceResolve(%currentDefaultPositionPrinc
ipalId, 5, true)

Returns ids of all active managers of current
user

12.6.15. ReferenceResolver

NQL refResolve

Return type Any type, dependent on type of resolved property

Parameters referenceId of type Integer, Long or String

category of type Integer or Long, must not be a list

propertyName of type String, must not be a list, should be a constant

areaName of type String (optional, default null), must not be a list

Available since 7.7, fourth parameter since 7.15

67

Description Resolves a property of a referenced resource. This function is determined
by a reference id, a category and a property name. A referenced resource
may be a repository resource, a workflow instance, a masterdata, a
principal(-info), a calendar, or a business process instance. The reference
id may be a numeric id or a string representation of a referenced
resource, e.g. a resource id or a workflow instance id etc. The category
must be a numeric value between 1 and 6, where 1 means repository, 2
means workflow, 3 means business process, 4 means masterdata, 5
means principal or principal info and 6 means calendar. The property
must be the name of a property which exists in given category or a query
operand which contains at least one property which exists in given
category. Providing an optional area name is only supported for
categories repository, workflow, business process and masterdata. In
categories repository, workflow and business process, the area name
must be the name of an existing document area. In category masterdata,
the area name must be the name of an existing masterdata scope. Note
that resolving of resources may cause performance problems, as the read
permissions are evaluated for every resource of a result set. If the
referenced id is an id of a principal and only the name is supposed to be
resolved, use function PrincipalIdResolver instead (does not need any
validation of permissions). Caution: the property to be resolved should be
deployed as a constant and NOT a property itself, as this produces
unpredictable results. This function is not searchable and not sortable.

Examples

NQL Description

select refResolve(parentidentifier, 1,
'displayname')

Returns the display name of the parent folder of
a resource

select refResolve(%currentUserPrincipalId, 5,
'emails')

Returns the email addresses of current principal

select refResolve(42, 1, 'displayname',
'AnotherDocumentArea')

Returns the display name of resource with
identifier 42 in document area with name
'AnotherDocumentArea'

12.6.16. ValueSetResolver

NQL valueSetResolve

Return type String

Parameters valueSet of type String

key of type String

Available since 7.14

68

Description Resolves an entry in given value set. If data of given value set is in
expected format (e.g. the format used by nscale Cockpit or nscale Web) the
entry with given key is considered and corresponding value is returned.
If given key does not exist, the key is returned as value. If given value set
does not exist, the nscale Server Application Layer tries to find a value set
which is represented by given name, e.g. if given value set name is the
suffix of an existing value set where the prefix represents a locale, the
locale of the client application is taken into account, see examples below.
If no value set can be found, the key is returned as value. This function is
not searchable and not sortable.

Examples

NQL Description

select
valueSetResolve('default_useraddresstitle',
'useraddresstitle_mr')

Returns Mr or Herr, depending on locale of the
client application (note that this value set is
provided when user scenario is enabled)

select
valueSetResolve('de_default_useraddresstitle',
'useraddresstitle_mr')

Returns Herr (note that this value set is provided
when user scenario is enabled)

12.6.17. KeyGenerator

NQL keyGen

Return type String or Long, depending on whether a uuid or a sequential number is
requested

Parameters keyGenerator of type String (optional, default null)

lowerBound of type Integer or Long (optional, default null)

upperBound of type Integer or Long (optional, default null)

Available since 7.3, second and third parameter since 7.7

69

Description Generates either a uuid or a numeric id. If the function is called without
any parameter, a uuid of type String is returned. If a key generator is
specified, a numeric id of type Long is generated by given key generator.
If given key generator is null, the default (plugins) key generator is
considered. Note that referenced key generator must exist (either a
KeyGeneratorDefinition or a RangeKeyGeneratorDefinition of given
name), else an exception is thrown. For a numeric id, a lower and an
upper bound may be specified, to determine the interval from which a
number is generated. When an interval is specified, the referenced key
generator should be a range key generator, specifying upper and lower
bounds for a non range key generator is not reasonable. When an
interval is specified for a range key generator and there is no more free
number left in this interval, null is returned. This function is not
searchable and not sortable.

Examples

NQL Description

select keyGen() Returns a uuid

select keyGen(null) Returns a numeric id from default (plugins) key
generator

select keyGen('myKeyGenerator') Returns a numeric id, generated by key
generator with name 'myKeyGenerator'

select keyGen('myRangeKeyGenerator', 1000,
2000)

Returns a numeric id between 1000 and 2000
(inclusive), generated by range key generator
with name 'myRangeKeyGenerator'

12.6.18. BitAnd

NQL bitAnd

Return type Long

Parameters lhsOperand of type Integer or Long

rhsOperand of type Integer or Long

Available since 7.5

Description Calculates a bitwise AND of two numeric operands. An operand which
evaluates to null is replaced by value 0.

Examples

NQL Description

select bitAnd(15, 44) Returns 12

70

NQL Description

where bitAnd(fulltextstate, 8) = 8 Finds resources where fulltext indexing caused
an error (not classified permanent)

12.6.19. BitOr

NQL bitOr

Return type Long

Parameters lhsOperand of type Integer or Long

rhsOperand of type Integer or Long

Available since 7.5

Description Calculates a bitwise OR of two numeric operands. An operand which
evaluates to null is replaced by value 0.

Examples

NQL Description

select bitOr(15, 44) Returns 47

12.6.20. LogicalAnd

NQL logicalAnd

Return type Boolean

Parameters operands… arbitrary number of operands of type Boolean

Available since 7.16

Description Returns true when all given parameters resolve to true, else false is
returned.

Examples

NQL Description

select logicalAnd(true, true, true) Returns true

12.6.21. LogicalOr

NQL logicalOr

Return type Boolean

71

Parameters operands… arbitrary number of operands of type Boolean

Available since 7.16

Description Returns true when at least one of given parameters resolves to true, else
false is returned.

Examples

NQL Description

select logicalOr(false, true, false) Returns true

12.6.22. LogicalXOr

NQL logicalXOr

Return type Boolean

Parameters operands… arbitrary number of operands of type Boolean

Available since 7.16

Description Returns true when exactly one of given parameters resolves to true, else
false is returned.

Examples

NQL Description

select logicalXOr(false, true, true) Returns false

12.6.23. MatchesNumeric

NQL matchesNumeric, isNumeric or _n

Return type Boolean

Parameters operand of type String

Available since 7.10

Description Evaluates whether a string represents a numeric value (could be
converted to a number).

Examples

NQL Description

select isNumeric('123') Returns true

select isNumeric('abc') Returns false

72

NQL Description

orderby toLong(case(isNumeric(displayname),
displayname, '0'))

Sorts a result set numerically, if displayname
contains values which can be converted to
numbers

12.6.24. Matches

NQL matches

Return type Boolean

Parameters operand of type String

regularExpression of type String

Available since 7.10

Description Evaluates whether a string matches a regular expression.

Examples

NQL Description

select matches('123', '[0-9]+') Returns true

select matches('abc', '[0-9]+') Returns false

12.6.25. Ascii

NQL ascii

Return type Integer

Parameters operand of type String or Blob

Available since 7.5

Description Returns the ascii code of a character (the first character of a string).

Examples

NQL Description

select ascii('A') Returns 65

select ascii(tokenize(displayname, '')) Returns ascii codes of all characters of property
displayname

73

12.6.26. Char

NQL char

Return type String

Parameters operand of type Integer, Long or Blob

Available since 7.5

Description Returns the character represented by an ascii code.

Examples

NQL Description

select char(65) Returns A

select toFlat(char(ascii(tokenize(displayname,
''))),'')

Returns the displayname

12.6.27. Custom

NQL customFunction, # or #<name of custom function>

Return type Defined by custom function

Parameters Defined by custom function

Available since 7.10

Description Executes a previously defined custom function. A custom function can be
defined in two ways, either by configuring a CustomFunctionDefinition
or by implementing a plugin of type
CustomComputedIndexingPropertyDefinitions whose handler class
implements interface CustomFunctionsHandler. The number and type of
parameters as well as the type of returned value depends on the
definition of the custom function.

Examples

NQL Description

select #FooBar(87, %today, displayname, true) Executes previously defined custom function
with name FooBar

select customFunction('FooBar', 87, %today,
displayname, true)

Equivalent to the former statement

select #(FooBar, 87, %today, displayname,
true)

Equivalent to the former statement

74

Chapter 13. Aggregate Searches
NQL also supports aggregate searches. The basic structure of an aggregate search is the same as for
a normal search with two exceptions. First, the count clause is not supported. Second, the select
clause is mandatory. This is evident as an aggregate search does not return key information, so an
aggregate search without a select clause would return nothing. The following aggregate functions
are supported:

Function Description

count Returns number of values which are not null

max Returns maximum of all values

min Returns minimum of all values

avg Returns average of all values

sum Returns sum of all values

countDistinct Returns number of different values which are not null

distinct Returns all different values (duplicates are omitted)

Every aggregate function allows exactly one QueryOperand as parameter, where the QueryOperand
must be either a property or a query function. If a query function is used, there must be at least one
property used inside of the (maybe nested) parameters of the query function. Note that the
aggregate functions max, min, avg and sum are ambiguous to query functions of same name. If
they are used in an aggregate search, the aggregate function is presumed, when the function only
has one parameter, else the query function is presumed (the aggregate function only allows one
parameter while the use of a query function with only one parameter is senseless). Note also that
aggregate function distinct may only be used for the first property of the select clause. Also, when
using distinct, the use of other aggregate functions is useless.

13.1. The select clause
There are only a few deviating characteristics for the select clause of an aggregate search, which
are described here. NQL allows an arbitrary number of aggregate functions in the select clause as
well as properties which do not use an aggregate function. Every property which does not use an
aggregate function is grouped, which means it is part of the groupby clause. Note that NQL does not
have an explicit groupby clause but the groupby clause is set implicitly. Be aware that the resulting
values of properties of the select clause are calculated in the database, so in an aggregate search all
used properties and query functions must be searchable. Additionally, computed properties are
allowed in the select clause which only need exactly one necessary property to be calculated. In this
case, the grouping takes place on the necessary property. When using aggregate function count it is
advised to count over a property which does not have null values (like identifier in Repository or
processidentifier in Workflow etc.), as using other properties may produce unpredictable results.

13.2. The where clause
There are only a few deviating characteristics for the where clause of an aggregate search, which

75

are described here. Aggregate functions may also be used in the where clause. In SQL, this would
result in a having clause, but NQL does not have an explicit having clause but the having clause is
set implicitly. Note that when aggregate functions are used in the where clause, all used properties
in the where clause which are not used in an aggregate function must also be used in the select
clause.

13.3. The orderby clause
There are only a few deviating characteristics for the orderby clause of an aggregate search, which
are described here. Aggregate functions may also be used in the orderby clause. Note that in the
orderby clause only properties may be used which are also part of the select clause.

13.4. Examples

NQL Description

select count(identifier) Returns the number of all resources in a folder
(of course only visible resources are considered)

select count(identifier) scope subtree Returns the number of all resources in the sub-
tree of a folder

select count(identifier), resourcetype Returns the number of all resources in a folder,
grouped by their resource type. So, assuming
there is at least one folder, document and link
inside of the folder, the returned result set
contains three rows, containing the number of
documents, folders and links in the first column
and the corresponding resource type in the
second column

select count(identifier), resourcetype orderby
resourcetype desc

Returns the same result as the search before, but
sorts it by resource type in descending order

select count(identifier), resourcetype orderby
count(identifier)

Returns the same result as the search before, but
sorts it by the number of resources per resource
type

select count(identifier), resourcetype where
count(identifier) > 10

Returns the number of all resources in a folder,
grouped by their resource type, where the
number of resources per resource type is
greater than 10

select count(identifier), resourcetype where
count(identifier) > 10 and resourcetype > 1
orderby count(identifier) desc, resourcetype

Returns the number of all documents and links
in a folder, grouped by their resource type,
where the number of resources per resource
type is greater than 10, ordered by number and
resource type

76

NQL Description

select count(identifier), resourcetype,
year(initialcreation)

Returns the number of all resources in a folder,
grouped by their resource type and the year of
creation

select count(identifier),
up(substring(displayname, 0, 1)) scope subtree

Returns the number of resources grouped by the
first character of the display name in upper case

select count(identifier), parentidentifier
scope subtree

Returns the number of resources per folder

select max(displayname), min(displayname),
avg(lifecyclestate) scope subtree

Returns the maximum display name, the
minimum display name and the average of all
lifecycle states

select max(displayname), min(displayname),
resourcetype scope subtree

Returns the maximum display name and the
minimum display name per resource type

select max(initialcreation),
min(initialcreation),
max(year(initialcreation)),
min(year(initialcreation)) scope subtree

Returns the maximum creation date, the
minimum creation date and the maximum and
minimum year of creation

select sum(itemlength) where resourcetype = 2
scope subtree

Returns the sum of the length of all content
items of all documents

select sum(itemlength), itemcontenttype where
resourcetype = 2 scope subtree

Returns the sum of the length of all content
items of all documents, grouped by their content
type

select count(identifier), displayname where
count(identifier) > 1 orderby
count(identifier) desc, displayname scope
subtree

Returns duplicate display names and the
number of their occurrences

select countDistinct(displayname) scope
subtree

Returns the number of different display names

select distinct(displayname) scope subtree Returns all different display names

77

Chapter 14. Subqueries
NQL also supports subqueries in form of instant filtered properties (shortened filtered properties).
A filtered property may be used in the list of requested properties (select clause) and in the
condition (where clause).

14.1. The select clause
In the select clause, a filtered property may be used in two ways. Either it is used to restrict the
returned values of a multi-value property or it is used to retrieve the value of an aggregate property
by building a subquery. In the first case, a filtered property consists of a target property and a
condition, separated by the \ character. The target property must be a multi-value property and the
condition must only contain properties of the same multi-value scope as the target property. The
effect is, that the returned values for the multi-value property are filtered by specified condition.
Note that the condition must not contain itself a filtered property. As for instant formatted
properties, an alias may be used for a filtered property. So the syntax for a filtered property to
restrict the returned values of a multi-value property is:

[alias=]targetProperty\condition

14.1.1. Examples

NQL Description

select itemcontenttype\itemcontenttype =
'text/plain'

Returns the multi-value property
itemcontenttype, where all entries are omitted
which are not text/plain (the returned lists are
filtered)

select text=itemcontenttype\itemcontenttype =
'text/plain'

The same search as above but with an alias

select itemcontenttype\itemlength >= 1000 Returns the multi-value property
itemcontenttype, where all entries are omitted
which are smaller than 1000 bytes

select x=itemcontenttype\itemcontenttype in
('text/plain', 'image/tiff') and itemlength >
100, itemcontenttype, itemlength

Returns three properties, column two contains
multi-value property itemcontenttype, column
three contains multi-value property itemlength
and column one contains filtered property x,
which contains all entries of itemcontenttype
where the type is text/plain or image/tiff and the
length is greater than 100

The second case to use a filtered property in the select clause is to retrieve the value of an aggregate
property. The basic structure of a filtered property for this case is the same as for the first case, so
there is a target property and a condition. In contrast to the first case however, the target property
may be a single-value property, the condition is optional and the filtered property must always be

78

parenthesized. The target property must be an aggregate property, as the subquery must return a
unique value. Furthermore, an additional component may be used in a filtered property, a bind
property. A bind property may be specified to bind a property of the subquery with the same
property of the superior select (a kind of join of the two statements). The bind property starts with
the @ character. When bind is used without specifying a property (by just declaring the @ character),
the primary key is bound. So the syntax for a filtered property to retrieve the value of an aggregate
property is:

[alias=](targetProperty[@[bindProperty]]\[condition])

14.1.2. Examples

NQL Description

select (max(displayname)\) Returns the maximum displayname of all
entries of returned result set, the returned value
is identical in all rows

select maxlen=(max(len(displayname))\) Returns the maximum length of all
displaynames of returned result set, the
returned value is identical in all rows

select
maxlen=(max(len(displayname))@resourcetype\)

Returns the maximum length of all
displaynames of returned result set per
resourcetype, the returned value is identical for
all rows with identical resourcetype

select pad(displayname,
(max(len(displayname))\))

Returns the padded displayname, the length of
all returned values is determined by the
maximum length of all displaynames of
returned result set

select contentlength, (sum(contentlength)\),
round(product(div(contentlength,
(sum(contentlength)\)), 100), 2)

Returns the content length, the sum of all
content lengths and the percentage of content
length compared to the overall length of all
contents, rounded to two decimal digits

14.2. The where clause
A filtered property in the where clause behaves like a subselect. The basic structure of a filtered
property in the where clause is the same as in the second case for the select clause, so there is a
target property, a condition and a bind property. In contrast to the select clause however, an alias
must not be used and the condition may contain itself filtered properties (a subselect inside of a
subselect).

In addition, there is another optional component in a filtered property in the where clause, a list of
filter facet properties. Besides the target property, all other components are optional. Filter facet
properties may be used, when the target property is an aggregate property. The effect is, that the
filter facet properties are grouped (they are part of the implicit groupby clause). The filter facet

79

properties start with the | character and are comma-separated.

In general, a subselect always returns a list, so for a subselect only operator in is supported. Sole
exception is when the target property is an aggregate property and there are no filter facet
properties used. In this case, the return value of the subselect is unique, so more operators may be
used like =, !=, <, <=, > or >=. A subselect in the where clause must always be parenthesized. So the
syntax for a filtered property in the where clause is:

(targetProperty[|filterFacetProperty[,...]][@[bindProperty]]\[condition])

14.2.1. Examples

NQL Description

where parentidentifier in
(identifier\parentidentifier = -1) scope
subtree

Finds all resources of level 2

where parentidentifier in
(identifier\parentidentifier in
(identifier\parentidentifier = -1)) scope
subtree

Finds all resources of level 3

where not identifier in (parentidentifier\)
and resourcetype = 1 scope subtree

Finds all empty folders

where int1 > (avg(int1)\) scope subtree Finds all resources where the value of integer
property int1 is greater than the average of int1.
Note that the use of operator > is allowed, as the
target property is an aggregate property and no
filter facet properties are specified

where int1 > (avg(int1)@resourcetype\) scope
subtree

Finds all resources where the value of integer
property int1 is greater than the average of int1,
regarding the own resource type (in other
words: finds all folders where the value of
integer property int1 is greater than the average
of all folders and analogous for documents and
links)

where displayname in
(max(displayname)|resourcetype\) scope subtree

Finds all resources where the display name is
equal to the maximum display name of either
folder, document or link

80

NQL Description

where displayname in
(max(displayname)@resourcetype\) scope subtree

Finds all resources where the display name is
equal to the maximum display name, regarding
the own resource type. The difference to the
former statement is as follows: assuming, the
maximum name of all folders is x, the maximum
name of all documents is y and the maximum
name of all links is z, then the former statement
would also find documents with name x and
links with name x and y. In contrast, this
statement binds the resource type and therefore
only folder x, document y and link z are found

where displayname in
(max(displayname)|resourcetype,
year(initialcreation)\) scope subtree

This is an example for a subselect with more
than one filter facet property; the subselect finds
the maximum display name per resource type
and year

select case(int1 > (avg(int1)\), 'yes', 'no') Returns yes for all resources where the value of
int1 is greater than the average of int1, else no is
returned

select displayname, identifier, version where
not version in (max(version)@identifier\)
orderby identifier, version

When searching for versions this query filters
the maximum version per resource

81

Chapter 15. Bulk Operations
Writing operations are not supported by NQL which means there is no equivalent to SQL’s insert,
update or delete statements. However, the nscale Query Tester does support bulk operations. For the
sake of completeness, the syntax of these bulk operations is also described here, but be aware that
this is not part of NQL!

15.1. Bulk Update
The nscale Query Tester supports bulk updates. A bulk update statement consists of the same
components as an NQL statement except that the select clause is replaced by an update clause. The
update clause consists of the key word update followed by a comma-separated list of key-value
pairs, where the key is a property and the value is a QueryOperand (a constant, context variable,
property, query function or a list of these), separated by the = character.

15.1.1. Examples

Update statement Description

update displayname = 'abc' where displayname
is null

Updates property displayname for all resources
in current folder where displayname is null

update displayname = 'abc' where displayname
is null scope subtree

Updates property displayname for all resources
in subtree of current folder where displayname
is null

update int1 = 7, int2 = 10 where plus(int1,
int2) < 3

Updates properties int1 and int2 where the sum
of int1 and int2 is less than 3

update filename = concat(displayname, '.',
fileextension) where contenttype is not null

Updates property filename for all resources
having content with the value of property
displayname, a dot and the value of property
fileextension

update color = ('green', 'red') Updates multi-value property color for all
resources

15.2. Bulk Delete
The nscale Query Tester supports bulk deletes. A bulk delete statement consists of the same
components as an NQL statement except that the select clause is replaced by a delete clause. The
delete clause simply consists of the key word delete.

15.2.1. Examples

Delete statement Description

delete where displayname = 'xyz' Deletes all resources in current folder where
displayname equals xyz

82

Delete statement Description

delete where resourcetype = 2 scope subtree Deletes all documents

delete Deletes all resources

83

	Application Layer NQL Documentation
	Table of Contents
	Nscale Query Language
	Chapter 1. Basic Structure
	Chapter 2. The select clause
	2.1. Examples

	Chapter 3. The where clause
	3.1. Examples

	Chapter 4. The orderby clause
	4.1. Examples

	Chapter 5. The paging element
	5.1. Examples

	Chapter 6. The scope element
	6.1. Examples

	Chapter 7. The count element
	7.1. Examples

	Chapter 8. The hidden element
	8.1. Examples

	Chapter 9. Properties
	9.1. Scope Repository, Workflow and Business Process (BPMN)
	9.2. Scope Masterdata, Principal (User Management) and Calendar (Collaboration)
	9.3. Notations

	Chapter 10. Constants
	10.1. Examples
	10.2. Convenience constants

	Chapter 11. Context Variables
	11.1. Examples

	Chapter 12. Query Functions
	12.1. Convert Functions
	12.2. Mathematical Functions
	12.3. String Functions
	12.4. Date/Timestamp Functions
	12.5. List Functions
	12.6. Other Functions

	Chapter 13. Aggregate Searches
	13.1. The select clause
	13.2. The where clause
	13.3. The orderby clause
	13.4. Examples

	Chapter 14. Subqueries
	14.1. The select clause
	14.2. The where clause

	Chapter 15. Bulk Operations
	15.1. Bulk Update
	15.2. Bulk Delete

